http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0004153Discussion
Our data demonstrate that recently formed sensory-perceptual memories are vulnerable to manipulation 30-min following watching a traumatic film. Why more precisely might visuospatial computer games be effective in reducing at least analog flashbacks following trauma? In accordance with the longstanding psychological model of human memory–the working memory model <13>, <18>–<20>, <41>, <42>, we propose that strategic, selective interference with the consolidation of recently triggered visual memories occurs via the demand on the player's limited visuospatial working memory resources. The major clinical theories of PTSD <2>, <43>, <44>, <45> converge to suggest that there are two forms of processing that occur simultaneously for any given traumatic event: (1) the sensory-perceptual processing of the trauma e.g. the sights and sounds experienced during a car crash; (2) verbal or conceptual processing e.g. making sense or a coherent narrative about what is occurring. It is information from sensory-perceptual processing that provides the foundation for flashback images. Clinical models of PTSD propose that the relative balance of sensory-perceptual versus verbal/conceptual processing of a traumatic event determines whether flashbacks are formed, whereby a skewed balance towards sensory-perceptual aspects of the trauma is pathological.
When viewing traumatic film stimuli, the type of sensory-perceptual focus engaged in is predominantly visual (rather than say olfactory or auditory). To interfere with this type of visual processing we need to target what are known cognitively as ‘visuospatial’ resources <19>. That is, visuospatial tasks that use the same type of processing as do visual flashbacks will interrupt memory consolidation of those flashbacks by competition for the same limited cognitive resources <24>. Thus, by selectively interfering with visual sensory-perceptual processing of the traumatic film via visuospatially demanding cognitive tasks, subsequent analog flashbacks are reduced. Note, this is not the same as simple distraction, since other types of tasks such as verbal tasks during traumatic films are predicted (and have been shown) to lead to increased flashbacks <23>, <24>. Our data is the first indication that the manipulation of visuospatial processing in the consolidation phase of recently activated trauma memories can serve to modulate future intrusive, involuntary flashbacks (despite leaving voluntary memory intact). “Tetris” participants experience fewer intrusions even while playing the game, supporting the competition for resources rationale. Significantly, we demonstrate that the visuospatial task conducted 30-min post-exposure to traumatic stimuli is effective in reducing flashbacks of that trauma as well as associated clinical symptomatology over 1-week.
Interestingly, the clinical literature offers potentially converging support for these findings. Eye Movement Densensitization and Reprocessing (EMDR) is an empirically-supported treatment for established PTSD <10>. During this therapy, the patient undergoes a series of eye movements whilst holding an intrusive traumatic memory in mind, leading to a reduction in the emotionality and vividness of the unpleasant mental image. One of several possible accounts of how EMDR might work is that the eye movements draw on visuospatial processing <18>, <46>, <47> and thus provide a dual task competing specifically for resources with the trauma imagery, reducing its impact. Our proposal similarly draws on a working memory rationale for how “Tetris” may affect flashback formation in a modality specific manner <48>, though emphasizes all the senses involved in imagery (not just the visual modality). However, a critical difference between the current experiment and EMDR is that EMDR is used for treating existing flashbacks in PTSD (at least one month post-trauma), but is not intended to be used during the memory consolidation phase targeted in the current study. Our interest in the immediate aftermath of trauma is to understand preventative (rather than just curative) measures to the development of PTSD flashbacks.
Speculatively, the effects of “Tetris” may not be limited to the immediate post-trauma period during which it is played but may even continue to compete for visuospatial resources later. For example, it has already been demonstrated <30> that images of “Tetris” can intrude during sleep-a period during which memory consolidation is known to occur. Future research is required to examine the precise mechanisms of action by which “Tetris” reduces flashbacks to trauma. We predict that a verbal task would not have comparable effects and may even worsen flashbacks. Thus future studies should compare both a visuospatial task (e.g. “Tetris”) with a verbal task (e.g. a verbal computer game) against a no-task control group.
Our alternative and novel approach of using cognitive visuospatial tasks, rather than pharmacological means to reduce flashbacks following trauma aims to deal directly with the consolidation and potentially, reconsolidation, of such intrusive imagery in an ethical, safe and economical way. We suggest this approach could be harnessed as a ‘cognitive vaccine’ to inoculate against escalation of flashbacks contributing to full blown PTSD. Further research is required but potential clinical applications of our paradigm include use by emergency services in the early post-trauma period, e.g. to victims of rape or delivering such tasks to populations subject to regular trauma exposure e.g. firefighters or those involved in armed combat. To better map the horizons of human memory, we should further delineate the clinical possibilities offered by cognitive theory to reduce pathological aspects of memory, such as flashbacks...(rest of article @ link)