Democratic Underground Latest Greatest Lobby Journals Search Options Help Login
Google

Obama could kill fossil fuels overnight with a nuclear dash for thorium

Printer-friendly format Printer-friendly format
Printer-friendly format Email this thread to a friend
Printer-friendly format Bookmark this thread
This topic is archived.
Home » Discuss » Editorials & Other Articles Donate to DU
 
Joanne98 Donating Member (1000+ posts) Send PM | Profile | Ignore Fri Sep-03-10 12:20 PM
Original message
Obama could kill fossil fuels overnight with a nuclear dash for thorium
If Barack Obama were to marshal America’s vast scientific and strategic resources behind a new Manhattan Project, he might reasonably hope to reinvent the global energy landscape and sketch an end to our dependence on fossil fuels within three to five years.

We could then stop arguing about wind mills, deepwater drilling, IPCC hockey sticks, or strategic reliance on the Kremlin. History will move on fast.

Muddling on with the status quo is not a grown-up policy. The International Energy Agency says the world must invest $26 trillion (£16.7 trillion) over the next 20 years to avert an energy shock. The scramble for scarce fuel is already leading to friction between China, India, and the West.


There is no certain bet in nuclear physics but work by Nobel laureate Carlo Rubbia at CERN (European Organization for Nuclear Research) on the use of thorium as a cheap, clean and safe alternative to uranium in reactors may be the magic bullet we have all been hoping for, though we have barely begun to crack the potential of solar power.

http://www.telegraph.co.uk/finance/comment/7970619/Obama-could-kill-fossil-fuels-overnight-with-a-nuclear-dash-for-thorium.html
Printer Friendly | Permalink |  | Top
Richardo Donating Member (1000+ posts) Send PM | Profile | Ignore Fri Sep-03-10 12:45 PM
Response to Original message
1. Balthorium G


"A doomsday GAP!"
Printer Friendly | Permalink |  | Top
 
kristopher Donating Member (1000+ posts) Send PM | Profile | Ignore Fri Sep-03-10 12:57 PM
Response to Original message
2. Thorium Fuel: No Panacea for Nuclear Power
Thorium Fuel: No Panacea for Nuclear Power
(Open Access Document)

By Arjun Makhijani and Michele Boyd


A Fact Sheet Produced by the Institute for Energy and Environmental Research and Physicians for Social Responsibility

Thorium “fuel” has been proposed as an alternative to uranium fuel in nuclear reactors. There are not “thorium reactors,” but rather proposals to use thorium as a “fuel” in different types of reactors, including existing light-water reactors and various fast breeder reactor designs.

Thorium, which refers to thorium-232, is a radioactive metal that is about three times more
abundant than uranium in the natural environment. Large known deposits are in Australia, India, and Norway. Some of the largest reserves are found in Idaho in the U.S. The primary U.S. company advocating for thorium fuel is Thorium Power (www.thoriumpower.com). Contrary to the claims made or implied by thorium proponents, however, thorium doesn’t solve the proliferation, waste, safety, or cost problems of nuclear power, and it still faces major technical hurdles for commercialization.


Not a Proliferation Solution

Thorium is not actually a “fuel” because it is not fissile and therefore cannot be used to start or sustain a nuclear chain reaction. A fissile material, such as uranium-235 (U-235) or plutonium-239 (which is made in reactors from uranium-238), is required to kick-start the reaction. The enriched uranium fuel or plutonium fuel also maintains the chain reaction until enough of the thorium target material has been converted into fissile uranium-233 (U-233) to take over much or most of the job. An advantage of thorium is that it absorbs slow neutrons relatively efficiently (compared to uranium-238) to produce fissile uranium-233.

The use of enriched uranium or plutonium in thorium fuel has proliferation implications. Although U-235 is found in nature, it is only 0.7 percent of natural uranium, so the proportion of U-235 must be industrially increased to make “enriched uranium” for use in reactors. Highly enriched uranium and separated plutonium are nuclear weapons materials.

In addition, U-233 is as effective as plutonium-239 for making nuclear bombs. In most proposed thorium fuel cycles, reprocessing is required to separate out the U-233 for use in fresh fuel. This means that, like uranium fuel with reprocessing, bomb-making material is separated out, making it vulnerable to theft or diversion. Some proposed thorium fuel cycles even require 20% enriched uranium in order to get the chain reaction started in existing reactors using thorium fuel. It takes 90% enrichment to make weapons-usable uranium, but very little additional work is needed to move from 20% enrichment to 90% enrichment. Most of the separative work is needed to go from natural uranium, which has 0.7% uranium-235 to 20% U-235.

It has been claimed that thorium fuel cycles with reprocessing would be much less of a proliferation risk because the thorium can be mixed with uranium-238. In this case, fissile uranium-233 is also mixed with non-fissile uranium-238. The claim is that if the uranium-238 content is high enough, the mixture cannot be used to make bombs without a complex uranium enrichment plant. This is misleading. More uranium-238 does dilute the uranium-233, but it also results in the production of more plutonium-239 as the reactor operates. So the proliferation problem remains – either bomb-usable uranium-233 or bomb-usable plutonium is created and can be separated out by reprocessing.

Further, while an enrichment plant is needed to separate U-233 from U-238, it would take less separative work to do so than enriching natural uranium. This is because U-233 is five atomic weight units lighter than U-238, compared to only three for U-235. It is true that such enrichment would not be a straightforward matter because the U-233 is contaminated with U-232, which is highly radioactive and has very radioactive radionuclides in its decay chain. The radiation-dose-related problems associated with separating U-233 from U-238 and then handling the U-233 would be considerable and more complex than enriching natural uranium for the purpose of bomb making. But in principle, the separation can be done, especially if worker safety is not a primary concern; the resulting U-233 can be used to make bombs. There is just no way to avoid proliferation problems associated with thorium fuel cycles that involve reprocessing. Thorium fuel cycles without reprocessing would offer the same temptation to reprocess as today’s once-through uranium fuel cycles.


Not a Waste Solution

Proponents claim that thorium fuel significantly reduces the volume, weight and long-term radiotoxicity of spent fuel. Using thorium in a nuclear reactor creates radioactive waste that proponents claim would only have to be isolated from the environment for 500 years, as opposed to the irradiated uranium-only fuel that remains dangerous for hundreds of thousands of years. This claim is wrong. The fission of thorium creates long-lived fission products like technetium-99 (half-life over 200,000 years). While the mix of fission products is somewhat different than with uranium fuel, the same range of fission products is created. With or without reprocessing, these fission products have to be disposed of in a geologic repository.

If the spent fuel is not reprocessed, thorium-232 is very-long lived (half-life:14 billion years) and its decay products will build up over time in the spent fuel. This will make the spent fuel quite radiotoxic, in addition to all the fission products in it. It should also be noted that inhalation of a unit of radioactivity of thorium-232 or thorium-228 (which is also present as a decay product of thorium-232) produces a far higher dose, especially to certain organs, than the inhalation of uranium containing the same amount of radioactivity. For instance, the bone surface dose from breathing the an amount (mass) of insoluble thorium is about 200 times that of breathing the same mass of uranium.

Finally, the use of thorium also creates waste at the front end of the fuel cycle. The radioactivity associated with these is expected to be considerably less than that associated with a comparable amount of uranium milling. However, mine wastes will pose long-term hazards, as in the case of uranium mining. There are also often hazardous non-radioactive metals in both thorium and uranium mill tailings.


Ongoing Technical Problems

Research and development of thorium fuel has been undertaken in Germany, India, Japan, Russia, the UK and the U.S. for more than half a century. Besi des remote fuel fabrication and issues at the front end of the fuel cycle, thorium-U-233 breeder reactors produce fuel (“breed”) much more slowly than uranium-plutonium-239 breeders. This leads to technical complications. India is sometimes cited as the country that has successfully developed thorium fuel. In fact, India has been trying to develop a thorium breeder fuel cycle for decades but has not yet done so commercially.

One reason reprocessing thorium fuel cycles haven’t been successful is that uranium-232 (U-232) is created along with uranium-233. U-232, which has a half-life of about 70 years, is extremely radioactive and is therefore very dangerous in small quantities: a single small particle in a lung would exceed legal radiation standards for the general public. U-232 also has highly radioactive decay products. Therefore, fabricating fuel with U-233 is very expensive and difficult.


Not an Economic Solution

Thorium may be abundant and possess certain technical advantages, but it does not mean that it is economical. Compared to uranium, thorium fuel cycle is likely to be even more costly. In a once-through mode, it will need both uranium enrichment (or plutonium separation) and thorium target rod production. In a breeder configuration, it will need reprocessing, which is costly. In addition, as noted, inhalati on of thorium-232 produces a higher dose than the same amount of uranium-238 (either by radioactivity or by weight).

Reprocessed thorium creates even more risks due to the highly radioactive U-232 created in the reactor. This makes worker protection more difficult and expensive for a given level of annual dose. Finally, the use of thorium also creates waste at the front end of the fuel cycle. The radioactivity associated with these is expected to be considerably less than that associated with a comparable amount of uranium milling. However, mine wastes will pose long-term hazards, as in the case of uranium mining. There are also often hazardous non-radioactive metals in both thorium and uranium mill tailings.

Fact sheet completed in January 2009
Updated July 2009



The way to get the job done RIGHT NOW is with wind, solar and the other renewable resources. They are ready to deploy and are fully capable of providing all of our energy needs while reducing energy costs over the long term.

Abstract here: http://www.rsc.org/publishing/journals/EE/article.asp?doi=b809990c

Full article for download here: http://www.stanford.edu/group/efmh/jacobson/revsolglobwarmairpol.htm


Energy Environ. Sci., 2009, 2, 148 - 173, DOI: 10.1039/b809990c

Review of solutions to global warming, air pollution, and energy security

Mark Z. Jacobson

Abstract
This paper reviews and ranks major proposed energy-related solutions to global warming, air pollution mortality, and energy security while considering other impacts of the proposed solutions, such as on water supply, land use, wildlife, resource availability, thermal pollution, water chemical pollution, nuclear proliferation, and undernutrition.

Nine electric power sources and two liquid fuel options are considered. The electricity sources include solar-photovoltaics (PV), concentrated solar power (CSP), wind, geothermal, hydroelectric, wave, tidal, nuclear, and coal with carbon capture and storage (CCS) technology. The liquid fuel options include corn-ethanol (E85) and cellulosic-E85. To place the electric and liquid fuel sources on an equal footing, we examine their comparative abilities to address the problems mentioned by powering new-technology vehicles, including battery-electric vehicles (BEVs), hydrogen fuel cell vehicles (HFCVs), and flex-fuel vehicles run on E85.

Twelve combinations of energy source-vehicle type are considered. Upon ranking and weighting each combination with respect to each of 11 impact categories, four clear divisions of ranking, or tiers, emerge.

Tier 1 (highest-ranked) includes wind-BEVs and wind-HFCVs.
Tier 2 includes CSP-BEVs, geothermal-BEVs, PV-BEVs, tidal-BEVs, and wave-BEVs.
Tier 3 includes hydro-BEVs, nuclear-BEVs, and CCS-BEVs.
Tier 4 includes corn- and cellulosic-E85.
...

Printer Friendly | Permalink |  | Top
 
Zoeisright Donating Member (1000+ posts) Send PM | Profile | Ignore Fri Sep-03-10 05:27 PM
Response to Reply #2
7. +10000000000
Or approximately the half-life of thorium. Which has an inverse relationship to the IQ of people who want filthy nuclear power.
Printer Friendly | Permalink |  | Top
 
Scruffy1 Donating Member (1000+ posts) Send PM | Profile | Ignore Fri Sep-03-10 07:46 PM
Response to Reply #2
9. Thanks-posters like you is why I come to DU
Printer Friendly | Permalink |  | Top
 
CJvR Donating Member (1000+ posts) Send PM | Profile | Ignore Fri Sep-03-10 01:24 PM
Response to Original message
3. Thorium reactors...
Thorium reactors are certainly an intresting technology, essentially a way to streach our uranium reasources and reducing the dangerous waste. Particulary as there are a number of energy bottlenecks in our forseeable future. It is certainly an intresting alternative to old uranium reactors and coal - which are the main alternatives.
Printer Friendly | Permalink |  | Top
 
kristopher Donating Member (1000+ posts) Send PM | Profile | Ignore Fri Sep-03-10 01:49 PM
Response to Reply #3
4. Renewables are a far better alternative.
They are ready to go,

they can produce all the power we need,

they can deliver the power when it is needed,

they are safer,

they are cheaper and

they can be built far faster than nuclear (especially a technology like thorium that still has a large number of significant technical obstacles).
Printer Friendly | Permalink |  | Top
 
CJvR Donating Member (1000+ posts) Send PM | Profile | Ignore Fri Sep-03-10 02:40 PM
Response to Reply #4
5. I doubt than.
They are ready to go, On a minor scale perhaps, but to replace the big power producing units? No way.

they can produce all the power we need, Not even close.

they can deliver the power when it is needed, Well that eliminates solar, wind, wave and water - what remains?

they are safer, To a point yes.

they are cheaper and Hardly, about 3 times the cost of coal.

they can be built far faster than nuclear... I doubt they can be built far faster once we are talking serious volume and reliability.



I would like to say the alternatives are mature enough to step forward but I dont think they are. That means you have two choises coal(oil & gas) or uranium (hydro if you have unexploited rivers). Increased demand are burning the uranium assets rather swiftly and coal have atmospheric issues and fusion seems to be permanently out of reach. Thorium seems like a reasonable option and while Technetium 99 is radioactive it is beta rays - not the Reapers rapiers of death, gamma rays, beta radiation is much easier to deal with.
Printer Friendly | Permalink |  | Top
 
kristopher Donating Member (1000+ posts) Send PM | Profile | Ignore Fri Sep-03-10 04:59 PM
Response to Reply #5
6. It doesn't matter what you doubt - facts are facts.
This includes resource assessment based on ready to deploy technologies.

Abstract here: http://www.rsc.org/publishing/journals/EE/article.asp?doi=b809990c

Full article for download here: http://www.stanford.edu/group/efmh/jacobson/revsolglobwarmairpol.htm


Energy Environ. Sci., 2009, 2, 148 - 173, DOI: 10.1039/b809990c

Review of solutions to global warming, air pollution, and energy security

Mark Z. Jacobson

Abstract
This paper reviews and ranks major proposed energy-related solutions to global warming, air pollution mortality, and energy security while considering other impacts of the proposed solutions, such as on water supply, land use, wildlife, resource availability, thermal pollution, water chemical pollution, nuclear proliferation, and undernutrition.

Nine electric power sources and two liquid fuel options are considered. The electricity sources include solar-photovoltaics (PV), concentrated solar power (CSP), wind, geothermal, hydroelectric, wave, tidal, nuclear, and coal with carbon capture and storage (CCS) technology. The liquid fuel options include corn-ethanol (E85) and cellulosic-E85. To place the electric and liquid fuel sources on an equal footing, we examine their comparative abilities to address the problems mentioned by powering new-technology vehicles, including battery-electric vehicles (BEVs), hydrogen fuel cell vehicles (HFCVs), and flex-fuel vehicles run on E85.

Twelve combinations of energy source-vehicle type are considered. Upon ranking and weighting each combination with respect to each of 11 impact categories, four clear divisions of ranking, or tiers, emerge.

Tier 1 (highest-ranked) includes wind-BEVs and wind-HFCVs.
Tier 2 includes CSP-BEVs, geothermal-BEVs, PV-BEVs, tidal-BEVs, and wave-BEVs.
Tier 3 includes hydro-BEVs, nuclear-BEVs, and CCS-BEVs.
Tier 4 includes corn- and cellulosic-E85.

Wind-BEVs ranked first in seven out of 11 categories, including the two most important, mortality and climate damage reduction. Although HFCVs are much less efficient than BEVs, wind-HFCVs are still very clean and were ranked second among all combinations.

Tier 2 options provide significant benefits and are recommended.

Tier 3 options are less desirable. However, hydroelectricity, which was ranked ahead of coal-CCS and nuclear with respect to climate and health, is an excellent load balancer, thus recommended.

The Tier 4 combinations (cellulosic- and corn-E85) were ranked lowest overall and with respect to climate, air pollution, land use, wildlife damage, and chemical waste. Cellulosic-E85 ranked lower than corn-E85 overall, primarily due to its potentially larger land footprint based on new data and its higher upstream air pollution emissions than corn-E85.

Whereas cellulosic-E85 may cause the greatest average human mortality, nuclear-BEVs cause the greatest upper-limit mortality risk due to the expansion of plutonium separation and uranium enrichment in nuclear energy facilities worldwide. Wind-BEVs and CSP-BEVs cause the least mortality.

The footprint area of wind-BEVs is 2–6 orders of magnitude less than that of any other option. Because of their low footprint and pollution, wind-BEVs cause the least wildlife loss.

The largest consumer of water is corn-E85. The smallest are wind-, tidal-, and wave-BEVs.

The US could theoretically replace all 2007 onroad vehicles with BEVs powered by 73000–144000 5 MW wind turbines, less than the 300000 airplanes the US produced during World War II, reducing US CO2 by 32.5–32.7% and nearly eliminating 15000/yr vehicle-related air pollution deaths in 2020.

In sum, use of wind, CSP, geothermal, tidal, PV, wave, and hydro to provide electricity for BEVs and HFCVs and, by extension, electricity for the residential, industrial, and commercial sectors, will result in the most benefit among the options considered. The combination of these technologies should be advanced as a solution to global warming, air pollution, and energy security. Coal-CCS and nuclear offer less benefit thus represent an opportunity cost loss, and the biofuel options provide no certain benefit and the greatest negative impacts.


Printer Friendly | Permalink |  | Top
 
CJvR Donating Member (1000+ posts) Send PM | Profile | Ignore Sat Sep-04-10 04:24 PM
Response to Reply #6
11. Certainly intresting but...
I didn't actually see any $$ signs in that summary regarding any of the alternative. I wonder if the pricetag was even considered.
Printer Friendly | Permalink |  | Top
 
Zoeisright Donating Member (1000+ posts) Send PM | Profile | Ignore Fri Sep-03-10 05:28 PM
Response to Reply #5
8. Really? Any evidence for that? Like links from reliable sources, not nuke links?
If we put 1/10 as much investment into alternatives as we have into coal and nukes, we would have been energy independent decades ago. Your 'doubts' mean nothing.
Printer Friendly | Permalink |  | Top
 
CJvR Donating Member (1000+ posts) Send PM | Profile | Ignore Sat Sep-04-10 03:54 PM
Response to Reply #8
10. Perhaps...
But coal and oil get investments because they are reliable and profitable, alternatives dont because they are not. My doubts indeed mean nothing but the doubts of politics, finance and industry do - and before you start on conspiracies just forget it; if you can profit from something it will get funding and backing.
Printer Friendly | Permalink |  | Top
 
DU AdBot (1000+ posts) Click to send private message to this author Click to view 
this author's profile Click to add 
this author to your buddy list Click to add 
this author to your Ignore list Fri Dec 27th 2024, 02:12 PM
Response to Original message
Advertisements [?]
 Top

Home » Discuss » Editorials & Other Articles Donate to DU

Powered by DCForum+ Version 1.1 Copyright 1997-2002 DCScripts.com
Software has been extensively modified by the DU administrators


Important Notices: By participating on this discussion board, visitors agree to abide by the rules outlined on our Rules page. Messages posted on the Democratic Underground Discussion Forums are the opinions of the individuals who post them, and do not necessarily represent the opinions of Democratic Underground, LLC.

Home  |  Discussion Forums  |  Journals |  Store  |  Donate

About DU  |  Contact Us  |  Privacy Policy

Got a message for Democratic Underground? Click here to send us a message.

© 2001 - 2011 Democratic Underground, LLC