Threats of Peak Oil to the Global Food Supply
A paper presented at the FEASTA Conference, "What Will We Eat as the Oil Runs Out?", June 23-25, 2005, Dublin Ireland
by Richard Heinberg
Food is energy. And it takes energy to get food. These two facts, taken together, have always established the biological limits to the human population and always will.
The same is true for every other species: food must yield more energy to the eater than is needed in order to acquire the food. Woe to the fox who expends more energy chasing rabbits than he can get from eating the rabbits he catches. If this energy balance remains negative for too long, death results; for an entire species, the outcome is a die-off event, perhaps leading even to extinction....
In the US, agriculture is directly responsible for well over 10% of all national energy consumption. Over 400 gallons of oil equivalent are expended to feed each American each year. About a third of that amount goes toward fertilizer production, 20% to operate machinery, 16% for transportation, 13% for irrigation, 8% for livestock raising, (not including the feed), and 5% for pesticide production. This does not include energy costs for packaging, refrigeration, transportation to retailers, or cooking.
Trucks move most of the world's food, even though trucking is ten times more energy-intensive than moving food by train or barge. Refrigerated jets move a small but growing proportion of food, almost entirely to wealthy industrial nations, at 60 times the energy cost of sea transport.
Processed foods make up three-quarters of global food sales by price (though not by quantity). This adds dramatically to energy costs: for example, a one-pound box of breakfast cereal may require over 7,000 kilocalories of energy for processing, while the cereal itself provides only 1,100 kilocalories of food energy.
Over all - including energy costs for farm machinery, transportation, and processing, and oil and natural gas used as feedstocks for agricultural chemicals - the modern food system consumes roughly ten calories of fossil fuel energy for every calorie of food energy produced.
But the single most telling gauge of our dependency is the size of the global population. Without fossil fuels, the stupendous growth in human numbers that has occurred over the past century would have been impossible. Can we continue to support so many people as the availability of cheap oil declines?
The transition to a non-fossil-fuel food system will take time. And it must be emphasized that we are discussing a systemic transformation - we cannot just remove oil in the forms of agrochemicals from the current food system and assume that it will go on more or less as it is. Every aspect of the process by which we feed ourselves must be redesigned. And, given the likelihood that global oil peak will occur soon, this transition must occur at a rapid pace, backed by the full resources of national governments.
Without cheap transportation fuels we will have to reduce the amount of food transportation that occurs, and make necessary transportation more efficient. This implies increased local food self- sufficiency. It also implies problems for large cities that have been built in arid regions capable of supporting only small populations on their regional resource base. One has only to contemplate the local productivity of a place like Nevada, to appreciate the enormous challenge of continuing to feed people in such a city such as Las Vegas without easy transportation.
We will need to grow more food in and around cities. Currently, Oakland California is debating a food policy initiative that would mandate by 2015 the growing within a fifty-mile radius of city center of 40% of the vegetables consumed in the city. If the example of Cuba were followed, rooftop gardens would result, as well as rooftop raising of food animals like chickens, rabbits and guinea pigs.
Localization of the food process means moving producers and consumers of food closer together, but it also means relying on the local manufacture and regeneration of all of the elements of the production process - from seeds to tools and machinery.... Clearly, we must minimize chemical inputs to agriculture.... We will need to re-introduce draft animals in agricultural production.... Governments must also provide incentives for people to return to an agricultural life.... Farming requires knowledge and experience, and so we will need education for a new generation of farmers.... It will be necessary as well to break up the corporate mega- farms that produce so much of today's cheap grain.... Thus land reform will be required in order to enable smallholders and farming co-ops to work their own plots.... In order for all of this to happen, governments must end subsidies to industrial agriculture and begin subsidizing post-industrial agricultural efforts.... Finally, given carrying-capacity limits, food policy must include population policy.... In sum, the transition to a fossil-fuel-free food system does not constitute a utopian proposal. It is an immense challenge and will call for unprecedented levels of creativity at all levels of society. But in the end it is the only rational option for averting human calamity on a scale never before seen.
http://321energy.com/editorials/heinberg/heinberg091605.html