So you think you know it all cuz some prof somewhere told you so..... and another one down and another one down, another one bites the dust. Say you're sorry.
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220060075683%22.PGNR.&OS=DN/20060075683&RS=DN/20060075683>><0072> It should be indicated that the Brown gas does assumes the existence of "atomic hydrogen". However, calculations have established that such a feature is grossly insufficient to explain all the feature of the HHO gas, as it will be evidence in the following. The fundamental novelty of this invention is, therefore, the use of "polarized atomic hydrogen" as depicted in FIG. 1b.<<
United States Patent Application 20060075683
Kind Code A1
Klein; Dennis J. ; et al. April 13, 2006
Apparatus and method for the conversion of water into a new gaseous and combustible form and the combustible gas formed thereby
Abstract
An electrolyzer which decomposes distilled water into a new fuel composed of hydrogen, oxygen and their molecular and magnecular bonds, called HHO. The electrolyzer can be used to provide the new combustible gas as an additive to combustion engine fuels or in flame or other generating equipment such as torches and welders. The new combustible gas is comprised of clusters of hydrogen and oxygen atoms structured according to a general formula H.sub.mO.sub.n wherein m and n have null or positive integer values with the exception that m and n can not be 0 at the same time, and wherein said combustible gas has a varying energy content depending on its use.
Inventors: Klein; Dennis J.; (Belleair, FL) ; Santilli; Ruggero Maria; (Palm Harbor, FL)
Correspondence Name and Address:
DENNIS G. LAPOINTE;LAPOINTE LAW GROUP, PL
PO BOX 1294
TARPON SPRINGS
FL
34688-1294
US
Serial No.: 274736
Series Code: 11
Filed: November 15, 2005
U.S. Current Class: 48/197FM; 204/268
U.S. Class at Publication: 048/197.0FM; 204/268
Intern'l Class: C10L 3/00 20060101 C10L003/00
Claims
1.-8. (canceled)
9. A bond between a fossil fuel and a combustible gas, said combustible gas being composed of clusters of hydrogen and oxygen atoms with a toroidal polarization of their orbitals and consequential magnetic field along the symmetry axis of said toroidal polarizations, said bond originating from the induced magnetic polarization of at least some of the atomic orbitals of said fuel and the consequential attraction between opposing magnetic polarities wherein said combustible gas has a varying energy content depending on its use and said bonded fossil fuel and combustible gas has a varying energy content depending on its use.
10. The bond according to claim 9, wherein an energy efficiency of a combustion of the resulting fuel is greater than a sum of the separate efficiencies of the combustion of said fossil fuel and said cluster of hydrogen and oxygen gas.
11. The bond according to claim 9, wherein a combustion of said resulting fuel has an exhaust emission having less pollutants than a combustion of said fossil fuel alone.
12. A combustible gas composed of clusters of hydrogen and oxygen atoms structured according to a general formula H.sub.mO.sub.n wherein m and n have null or positive integer values with the exception that m and n can not be 0 at the same time.
13. The combustible gas according to claim 12, wherein said combustible gas includes atomic hydrogen.
14. The combustible gas according to claim 12, wherein said combustible gas includes atomic oxygen.
15. The combustible gas according to claim 12, wherein the combustible gas instantly melts solids.
16. The combustible gas according to claim 12, wherein the combustible gas is capable of combustion without the need of atmospheric oxygen.
17. The combustible gas according to claim 12, wherein the combustible gas is capable of bonding to combustible fuels via magnetic induction.
18. The combustible gas according to claim 12, wherein said clusters of hydrogen and oxygen atoms structured according to the general formula H.sub.mO.sub.n are magnecules.
19. The combustible gas according to claim 12, wherein when said combustible gas is used as an additive with a combustible fuel, a combustion of said fuel having said additive results in an exhaust emission having less pollutants than a combustion of said fuel alone.
20. The combustible gas according to claim 12, wherein said combustible gas has a varying energy content depending on its use.
21.-50. (canceled)
Description
RELATED APPLICATION
<0001> This patent application is a divisional application of U.S. patent application Ser. No. 10/760,336 filed on Jan. 20, 2004, which is a continuation-in-part application of the U.S. patent application Ser. No. 10/277,841 filed on Oct. 22, 2002, a continuation-in-part application of the U.S. patent application Ser. No. 10/065,111 filed on Sep. 18, 2002, and a continuation-in-part application of the U.S. patent application Ser. No. 09/826,183 filed on Apr. 4, 2001.
BACKGROUND OF THE INVENTION
<0002> 1. Field of the Invention
<0003> This invention is related to equipment or a system and method for the processing of water or distilled water into a gaseous and combustible form of HHO combustible gas produced from water for use in internal combustion engine systems, in other fossil fuel engine systems, in gaseous welding systems and other similar systems. The invention is also related to the form of HHO combustible gas produced from electrolyzers or gas generators connected to such systems.
<0004> The field of this patent application has been the subject of a rather vast number of patents. Among such prior art is U.S. Pat. No. 4,014,777 issued on Mar. 29, 1977 to Yull Brown under the title "Welding"; U.S. Pat. No. 4,081,656 issued on Mar. 28, 1978 to Yull Brown under the title "Arc assisted hydrogen/oxygen welding"; and other similar patents. In accordance with the above patents as well as with the subsequent rather large literature in the field, "Brown gas" is defined as a combustible gas composed of conventional hydrogen and conventional oxygen gases having the exact stochiometric ratio of 2/3 hydrogen and 1/3 oxygen. As we shall see, the combustible gas treated in this invention is dramatically different than the Brown gas.
<0005> The electrolytic equipment and methods for water separation have also been the subject of a vast number of patents, among which is U.S. Pat. No. 4,726,888 issued Feb. 23, 1988 to Michael McCambridge, entitled "Electrolysis Of Water;" U.S. Pat. No. 5,231,954 issued Aug. 3, 1995 to Gene B. Stowe entitled "Hydrogen/Oxygen Fuel Cell"; U.S. Pat. No. 5,401,371 issued Mar. 29, 1995 to Yujiro Oshima entitled "Hydrogen Generator;" and others.
<0006> The novelty of the present invention over preceding prior art is clear and distinct. The prior art deals with equipment and methods for the processing of water into conventional gaseous fuels, that is, fuels possessing the conventional molecular chemical composition or mixture of chemical compositions and is sometimes referred to as "Brown's Gas". By comparison, the present invention provides equipment or a system and related processes (methodology) to produce novel fuel composed of a chemical species beyond that of molecules, that is, HHO combustible gas, which fuel is produced from water using a particular form of electrolyzer.
DESCRIPTION OF THE INVENTION
<0007> This invention deals with the structure, properties and initial applications of a new clean burning combustible gas hereinafter called "HHO gas" produced from distilled water using a special electrolyzer described in detail in the Specifications.
<0008> It will be soon evident that, despite a number of similarities, the HHO gas is dramatically different than the Brown gas or other gases produced by pre-existing electrolyzers. In fact, the latter is a combination of conventional hydrogen and conventional oxygen gases, that is, gases possessing the conventional "molecular" structure, having the exact stochiometric ratio of 2/3 hydrogen and 1/3 oxygen. As we shall see, the HHO gas does not have such an exact stochiometric ratio but instead has basically a structure having a "magnecular" characteristic, including the presence of clusters in macroscopic percentages that cannot be explained via the usual valence bond. As a consequence, the constituents clusters of the Brown Gas and the HHO gas are dramatically different both in percentages as well as in chemical composition, as shown below.
<0009> The first remarkable feature of the special electrolyzers of this invention are their efficiencies. For example, with the use of only 4 Kwh, an electrolyzer rapidly converts water into 55 standard cubic feet (scf) of HHO gas at 35 pounds per square inch (psi). By using the average daily cost of electricity at the rate of $0.08/Kwh, the above efficiency implies the direct cost of the HHO gas of $0.007/scf. It then follows that the HHO gas is cost competitive with respect to existing fuels.
<0010> Under direct inspection, the HHO gas results to be odorless, colorless and lighter than air. A first basic feature in the production of the HHO gas is that there is no evaporation of water at all, and water is directly transmuted into the HHO gas. In any case, the electric energy available in the electrolyzer is basically insufficient for water evaporation.
<0011> This feature alone establishes that the special electrolyzers of this invention produce a "new form of water" which is gaseous and combustible. The main objective of this invention is the first identification on record of the produced unknown chemical composition of the HHO gas, its relationship with the special electrolyzers of this invention, and some initial applications.
<0012> The second important feature of the HHO gas is that it exhibits a "widely varying energy content" in British Thermal Units (BTU), ranging from a relatively cold flame in open air, to large releases of thermal energy depending on its use. This is a direct evidence of fundamental novelty in the chemical structure of the HHO gas.
<0013> In fact, all known fuels have a "fixed energy content" namely, a value of BTU/scf that remains the same for all uses. Also, the variable character of the energy content of the HHO gas is clear evidence that the gas has a magnecular characteristic in its structure, rather than a molecular structure, namely, that its chemical composition includes bonds beyond those of valence type.
<0014> The third important feature of the HHO gas is that it does not require any oxygen for its combustion since it contains in its interior all oxygen needed for that scope. By recalling that other fuels require atmospheric oxygen for their combustion, thus causing a serious environmental problem known as "oxygen depletion," the capability to have combustion without any oxygen depletion renders the HHO gas particularly important on environmental grounds.
<0015> The fourth important feature of the HHO gas is its anomalous adhesion to gases, liquids and solids, as verified experimentally below, thus rendering its use particularly effective as an additive for the enhancement of desired qualities.
<0016> The fifth important feature of the HHO gas is that it does not follow the fundamental PVT law of all conventional gases (namely, those with molecular structure), since the HHO gas begins to deviate from this law at around 150 psi, and it reacquires the water state at a sufficiently high pressures beginning with 250 psi. These aspects are further being investigated for possible development and commercial exploitation.
<0017> The sixth important feature of the HHO gas is that it bonds to gaseous fuels (such as natural gas, magnegas fuel, and other fuels) and liquid fuels (such as diesel, gasoline, liquid petroleum, and other fuels) by significantly improving their thermal content as well as the environmental quality of their exhaust.
<0018> The seventh and most important feature of the HHO gas is that it melts almost instantaneously tungsten, bricks, and other highly refractive substances. In particular, measurements have established the remarkable capability by the HHO gas of reaching almost instantaneously temperatures up to 9,000 degrees C., namely a temperature of the order of that in the Sun chromosphere under which all substances on Earth can be sublimated.
<0019> This invention also involves an electrolyzer for the separation of water, which includes, in one embodiment an electrolysis chamber; an aqueous electrolytic solution comprising water and electrolyte, the aqueous electrolyte solution partially filling the electrolysis chamber such that a gas reservoir region is formed above the aqueous electrolyte solution; two principal electrodes comprising an anode electrode and a cathode electrode, the two principal electrodes being at least partially immersed in the aqueous electrolyte solution; one or more supplemental electrodes at least partially immersed in the aqueous electrolyte solution and interposed between the two principal electrodes wherein the two principal electrodes and the one or more supplemental electrodes are held in a fixed spatial relationship; wherein said electrolyzer produces a combustible gas composed of hydrogen and oxygen atoms and their bonds into chemical species caused by electrons valence bonds and the bond due to attractive forces between opposing magnetic polarities originating in the toroidal polarization of the electron orbitals. Furthermore, the relatively simple design of the electrodes--as rectangular or square metallic shapes allows for the electrodes to be easily replaced. The combustible gas is collected in the gas reservoir region, which is adapted to deliver the gas to the fuel system of an internal combustion engine.
<0020> The invention can be used to improve the fuel efficiency of an internal combustion engine. The method comprises using any of the embodiments of the electrolyzers disclosed herein in conjunction with an internal combustion engine. An electrical potential is applied to the electrodes of the electrolyzer thereby caused the electrolyzer to generate the gas. The gas is then combined with the fuel in the fuel system of the internal combustion engine before the fuel is combusted in the internal combustion engine.
<0021> In still another embodiment of an electrolyzer, an electrolyzer includes an electrolysis chamber which holds an electrolyte solution. The electrolysis chamber mates with a cover at a flange. Preferably, there is a seal between the chamber and cover, which is made from a neoprene gasket, which is placed between the flange and cover. The electrolyte solution may be an aqueous electrolyte solution to produce a mixture of the novel gases; however, to produce the novel inventive gases, distilled water preferably is used.
<0022> The electrolyte partially fills the electrolysis chamber during operation to level such that gas reservoir region is formed above the electrolyte solution. The electrolyzer includes two principle electrodes--anode electrode and cathode electrode--which are at least partially immersed in the electrolyte solution. Anode electrode and cathode electrode slip into grooves in a rack. The rack is placed inside the chamber. One or more supplemental electrodes are also placed in the rack. Again, the supplemental electrodes are at least partially immersed in the aqueous electrolyte solution and interposed between the anode electrode and cathode electrode. Furthermore, anode electrode, cathode electrode, and supplemental electrodes are held in a fixed spatial relationship by rack. Preferably, anode electrode, cathode electrode, and supplemental electrodes are separated by a distance of about 0.25 inches. The one or more supplemental electrodes allow for enhanced and efficient generation of this gas mixture. Preferably, there are from 1 to 50 supplemental electrodes interposed between the two principal electrodes. More preferably, there are from 5 to 30 supplemental electrodes interposed between the two principal electrodes, and most preferably, there are about 15 supplemental electrodes interposed between the two principal electrodes. Preferably, the two principle electrodes are each individually a metallic wire mesh, a metallic plate, or a metallic plate having one or more holes. More preferably, the two principle electrodes are each individually a metallic plate. A suitable metal from which the two principal electrodes are formed, includes but is not limited to, nickel, nickel containing alloys, and stainless steel. The preferred metal for the two electrodes is nickel. The one or more supplemental electrodes are preferably a metallic wire mesh, a metallic plate, or a metallic plate having one or more holes. More preferably, the one or more supplemental electrodes are each individually a metallic plate. A suitable metal from which the two principal electrodes are formed, includes but is not limited to, nickel, nickel containing alloys, and stainless steel. The preferred metal for the two electrodes is nickel.
<0023> During operation of the electrolyzer, a voltage is applied between the anode electrode and cathode electrode which causes the novel gas to be produced and which collects in a gas reservoir region. The gaseous mixture exits the gas reservoir region from through an exit port and ultimately is fed into the fuel system of an internal combustion engine. An electrical contact to anode electrode is made through a contactor and electrical contact to cathode electrode is made by another contactor. The contactors are preferably made from metal and are slotted with channels such that the contactors fit over the anode electrode and cathode electrode. The contactors are attached to rods, which slip through holes in the cover. Preferable the holes are threaded and the rods are threaded rods so that rods screw into the holes. The contactors also hold the rack in place since the anode electrode and cathode electrode are held in place by channels and by grooves in the rack. Accordingly, when the cover is bolted to the chamber, the rack is held at the bottom of the chamber. The electrolyzer optionally includes a pressure relief valve and a level sensor. The pressure relief valve allows the gaseous mixture in the gas reservoir to be vented before a dangerous pressure buildup can be formed. The level sensor ensures that an alert is sounded and the flow of gas to the vehicle fuel system is stopped when the electrolyte solution gets too low. At such time when the electrolyte solution is low, addition electrolyte solution is added through a water fill port. The electrolyzer may also include a pressure gauge so that the pressure in the reservoir may be monitored. Finally, the electrolyzer optionally includes one or more fins which remove heat from the electrolyzer.
<0024> In a variation of an electrolyzer, a first group of the one or more supplemental electrodes is connected to the anode electrode with a first metallic conductor and a second group of the one or more supplemental electrodes is connected to the cathode electrode with a second metallic conductor. The anode electrode, cathode electrode, and supplemental electrodes are held to the rack by a holder rod, which slips through channels in the rack and the holes in the electrodes. The rack is preferably fabricated from a high dielectric plastic such as PVC, polyethylene or polypropylene. Furthermore, the rack holds the anode electrode, cathode electrode, and supplemental electrodes in a fixed spatial relationship. Preferably, the fixed spatial relationship of the two principal electrodes and the one or more supplemental electrodes is such that the electrodes (two principal and one or more supplemental) are essentially parallel and each electrode is separated from an adjacent electrode by a distance from about 0.15 to about 0.35 inches. More preferably, each electrode is separated from an adjacent electrode by a distance from about 0.2 to about 0.3 inches, and most preferably about 0.25 inches. The fixed spatial relationship is accomplished by a rack that holds the two principal electrodes and the one or more supplemental electrodes in the fixed spatial relationship. The electrodes sit in grooves in the rack which define the separations between each electrode. Furthermore, the electrodes are removable from the rack so that the electrodes or the rack may be changed if necessary. Finally, since the rack and anode electrode and cathode electrode are held in place as set forth above, the supplemental electrodes are also held in place because they are secured to the rack by the holder rod.
<0025> During operation, the novel combustible gas is formed by the electrolysis of the electrolyte solution in the electrolyzer. The electrolyzer is connected to a collection tank by a pressure line. The gases are collected and temporarily stored in the collection tank. The collection tank optionally includes a pressure relief valve to guard against any dangerous pressure build up. The collection tank is connected to a solenoid by a pressure line. The solenoid is in turn connected by a pressure line to an engine intake manifold. Optionally, a flash arrestor is incorporated in the pressure line to prevent a flame from propagating in a tube. Furthermore, a pressure line also includes an orifice to regulate the flow of the gaseous mixture into the intake manifold. The size of this orifice will depend on the size of the engine. For example, an orifice diameter of about 0.04 is suitable for a 1 liter engine, about 0.06 inches is suitable for a 2.5 liter engine, and about 0.075 inches is suitable for a V8 engine. The applied voltage to the electrolyzer is provided through the solenoid by an electrolyzer battery. When the pressure in the collection tank drops below about 25 psi, solenoid switches and a voltage of about 12 V is applied between the anode electrode and cathode electrode. A battery isolator allows for charging of a vehicle battery and electrolyzer battery by an alternator while keeping the electrolyzer battery and vehicle battery electrically isolated. Furthermore, the solenoid is powered by the vehicle battery when the main switch is activated. A gas mixer solenoid is also powered by the vehicle battery and opens when the gas mixture is provided to the intake manifold. The solenoid also receives a feedback from the level sensor which causes the solenoid to shut off the gas flow if the electrolyte solution level in the electrolyzer gets too low. Finally, when the method and apparatus of the present invention are used in a vehicle, the operation of the vehicle's oxygen sensor needs to be adjusted to take into account the additional oxygen that is added to the fuel system from the electrolyzer. Normally, if the oxygen sensor senses more oxygen, the vehicle's computer would determine that the engine is running lean and open up the fuel injectors to a richer fuel mixture. This is undesirable and would cause poor fuel economy.
<0026> In another embodiment of the present invention, a method for increasing the fuel efficiency of an internal combustion engine is provided. The method of this embodiment utilizes the electrolyzer described above in conjunction with an internal combustion engine. Specifically, the method comprises providing an electrolyzer equipment described above or as further described below in other novel embodiments; applying an electrical potential between the electrodes wherein the novel combustible gas described herein is generated and collected in the gas reservoir region and wherein the electrolyzer is adapted to deliver the combustible gas to the fuel system of an internal combustion engine; and combining the combustible gas produced with fuel in the fuel system of an internal combustion engine. The step of adjusting the operation of an oxygen sensor as set forth above is also provided.
<0027> In another embodiment, an electrolyzer or gas generator is incorporated into a welding/cutting torch system or another type of equipment/engine system. This system comprises an electrolyte reservoir, having a top and a bottom, containing electrolytic fluid therein. The fluid herein is preferably water. The electrolyte reservoir comprises a broken or permeable plate, which is sealably and circumferentially positioned around a top end of the electrolyte reservoir. Plate functions to release gas pressure within the electrolyte reservoir when exceeding a pre-determined safety level.
<0028> The self-producing hydrogen and oxygen gas generating system further comprises a pump, preferably an electromagnetic pump, which is connected at one distal end to the bottom of the electrolyte reservoir. Pump is connected at an opposite distal end to at least one hydrogen and oxygen electrolyzer/generator containing an electrical conductor therein. The electrical conductor is electrically connected on one distal end to an electrical ground. The opposite distal end of the electrical conductor is electrically connected to one distal end of a pressure controller. The opposite distal end of the electrical conductor is electrically connected to a power source. Pump functions to circulate electrolytic fluid from the electrolyte reservoir through at least one hydrogen and oxygen electrolyzer/generator through a radiator back into the electrolyte reservoir via a gas pipe. The radiator functions to cool the generated hydrogen and oxygen gas before returning to the electrolyte reservoir.
<0029> The pressure controller is connected to the electrolyte reservoir and monitors the pressure therein. When gas pressure within the electrolyte reservoir exceeds a pre-determined level, electrical current is terminated to the electrical conductor contained within the hydrogen and oxygen generator thereby ceasing production of hydrogen and oxygen gas. When gas pressure within the electrolyte reservoir drops below a pre-determined level, electrical current is connected to the electrical conductor contained within the hydrogen and oxygen generator thereby commencing production of hydrogen and oxygen gas. The pre-selected level is less than the pre-selected level required to cause a pressure release through plate.
<0030> This self-producing on-demand hydrogen and oxygen generating system further comprises a non-return valve connected at one end to an upper end of the electrolyte reservoir below plate. The non-return valve is further connected to a dryer/filter means or tank at an opposite distal end.
<0031> System further comprises another filter/dryer means or tank in fluid communication with one end of the electrolyte reservoir above plate and further connected at an opposite distal end to another non-retum valve via gas line, which is connected at an opposite end to another filter/dryer means or tank.
<0032> System further comprises a decompression valve in fluid communication at one end to the top end of the electrolyte reservoir and further being in fluid communication with the gas pipe, which in turn is connected to radiator.
<0033> The welding system further comprises a microprocessor controlled D.C. amperage regulator adapted to regulate the D.C. amperage from the power source to the hydrogen and oxygen generator. A first microprocessor controlled cut-off switch is adapted to terminate the power source to the welder in response to a malfunction of the pump.
<0034> A second microprocessor controlled cut-off switch is adapted to terminate the power source to the welder in response to an insufficient electrolyte solution condition within the electrolyte reservoir. A microprocessor controlled liquid crystal display is adapted to display operating statistics regarding the welding system, such statistics to include hours of operation, amperage, indicator lights and pressure gauge readings. The liquid crystal display receives input from a plurality of locations within the system.
<0035> A microprocessor controlled polarity change system is adapted to change the polarity of the electrical conductor located within the hydrogen and oxygen generator. A microprocessor controlled cool-down system is adapted to operate a generator fan and the pump wherein operation of the fan and the pump continue throughout a cool-down stage following manual shut-off of the welder.
<0036> The produced gas or HHO gas is routed from the dryer means to the final gas reservoir tank. Dryer means and are only exemplary. It is understood that a single unit may be designed to effectively accomplish the same objective. The gas is then supplied on-demand to the engine or in this case, the welding equipment, through gas line and hydrogen flash suppressor check valve (non-return valve) and control valve.
<0037> As mentioned above, a flame from said produced gas or species of hydrogen and oxygen, from said electrolyzer can instantly melt solids without the use of atmospheric oxygen. The produced gas can also be used as a fuel without the use of atmospheric oxygen, and can bond to other substances via magnetic induction.
<0038> A bond is created between a fossil fuel and a combustible gas composed by a combination of hydrogen and oxygen atoms with toroidal polarization of their orbitals. The bond originates from the induced magnetic polarization of at least some of the orbitals of said fuel and the consequential attraction between opposing magnetic polarities. The combustion exhaust of the resulting fuel is cleaner than that of said fossil fuels. Further, the resulting fuel has contained more thermal energy than that of said fossil fuels.
BRIEF DESCRIPTION OF THE DRAWINGS
<0039> FIG. 1a depicts a conventional hydrogen atom with its distribution of electron orbitals in all space directions, thus forming a sphere;
<0040> FIG. 1b depicts the same hydrogen atom wherein its electron is polarized to orbit within a toroid resulting in the creation of a magnetic field along the symmetry axis of said toroid;
<0041> FIG. 2a depicts a conventional hydrogen molecule with some of the rotations caused by temperature;
<0042> FIG. 2b depicts the same conventional molecule in which the orbitals are polarized into toroids, thus causing two magnetic field in opposite directions since the hydrogen molecule is diamagnetic;
<0043> FIG. 3a depict the conventional water molecules H--O--H in which the dimers H--O and O--H form an angle of 105 degrees, and in which the orbitals of the two H atoms are polarized in toroids perpendicular to the H--O--H plane;
<0044> FIG. 3b depicts the central species of this invention consisting of the water molecule in which one valence bond has been broken, resulting in the collapse of one hydrogen atom against the other;
<0045> FIG. 4a depicts a polarized conventional hydrogen molecule;
<0046> FIG. 4b depicts a main species of this invention, the bond between two hydrogen atoms caused by the attractive forces between opposing magnetic polarities originating in the toroidal polarizations of the orbitals;
<0047> FIG. 5 depicts a new chemical species identified for the first time in this invention consisting of two dimers H--O of the water molecule in their polarized form as occurring in the water molecule, with consequential magnetic bond, plus an isolated and polarized hydrogen atom also magnetically bonded to the preceding atoms;
<0048> FIG. 6 depicts mass spectrometric scans of the HHO gas of this invention;
<0049> FIG. 7 depicts infrared scans of the conventional hydrogen gas;
<0050> FIG. 8 depicts infrared scans of the conventional oxygen gas;
<0051> FIG. 9 depicts infrared scans of the HHO gas of this invention;
<0052> FIG. 10 depicts the mass spectrography of the commercially available diesel fuel;
<0053> FIG. 11 depicts the mass spectrography of the same diesel fuel of the preceding FIG. 10 with the HHO gas of this invention occluded in its interior via bubbling;
<0054> FIG. 12 depicts an analytic detection of the hydrogen content of the HHO gas of this invention;
<0055> FIG. 13 depicts an analytic detection of the oxygen content of the HHO gas of this invention;
<0056> FIG. 14 depicts an analytic detection of impurities contained in the HHO gas of this invention;
<0057> FIG. 15 depicts the anomalous blank of the detector since it shows residual substances following the removal of the gas;
<0058> FIG. 16 depicts a scan confirming the presence in HHO of the basic species with 2 amu representing H--H and H.times.H, and the presence of a clean species with 5 amu that can only be interpreted as H--H.times.H--H.times.H;
<0059> FIG. 17 depicts a scan which provides clear evidence of a species with mass 16 amu that in turn confirms the presence in HHO of isolated atomic oxygen, and which confirms the presence in HHO of the species H--O with 17 amu and the species with 18 amu consisting of H--O--H and H.times.H--O;
<0060> FIG. 18 depicts a scan which establishes the presence in HHO of the species with 33 amu representing O--OXH or O--O--H, and 34 amu representing O--H.times.O--H and similar configurations;
<0061> FIG. 19 is an exploded view of an electrolyzer;
<0062> FIG. 20 is top view of a variation of an electrolyzer in which one group of supplemental electrodes are connected to the anode electrode and a second group of supplemental electrodes are connected to the cathode electrode;
<0063> FIG. 21 is a perspective view of the electrode plate securing mechanism for the electrolyzer of FIG. 20;
<0064> FIG. 22 is a plumbing schematic showing the integration of an electrolyzer when applied to a vehicle;
<0065> FIG. 23 is an electrical schematic showing the integration of an electrolyzer when applied to a vehicle; and
<0066> FIG. 24 is a schematic representation of a mixed gas electrolyzer applied to a welder system.
DETAILED DESCRIPTION OF THE INVENTION
<0067> A summary of the scientific representation of the preceding main features of the HHO gas is outlined below without formulae for simplicity of understanding by a broader audience.
<0068> Where the HHO gas originates from distilled water using a special electrolytic process described hereinafter, it is generally believed that such a gas is composed of 2/3 (or 66.66% in volume) hydrogen H2 and 1/2 (or 33.33% in volume) oxygen O2.
<0069> A fundamental point of this invention is the evidence that such a conventional mixture of H2 and O2 gases absolutely cannot represent the above features of the HHO gas, thus establishing the novel existence in the produced inventive HHO gas.
<0070> The above occurrence is established beyond any possible doubt by comparing the performance of the HHO gas with that of a mixture of 66.66% of H2 and 33.33% of O2. There is simply no condition whatsoever under which, the latter gas can instantly cut tungsten or melt bricks as done by the HHO gas, therein supporting the novelty in the chemical structure of the produced HHO gas.
<0071> To begin the identification of the novelty in the HHO gas we note that the special features of the HHO gas, such as the capability of instantaneous melting tungsten and bricks, require that HHO contains not only "atomic hydrogen" (that is, individual H atoms without valence bond to other atoms as in FIG. 1a), but also "magnetically polarized atomic hydrogen", that is, hydrogen atoms whose electrons are polarized to rotate in a toroid, rather than in all space directions, as per FIG. 1b.
<0072> It should be indicated that the Brown gas does assumes the existence of "atomic hydrogen". However, calculations have established that such a feature is grossly insufficient to explain all the feature of the HHO gas, as it will be evidence in the following. The fundamental novelty of this invention is, therefore, the use of "polarized atomic hydrogen" as depicted in FIG. 1b.