"Scientists have found the first direct evidence linking large-scale coastal farming to massive blooms of marine algae that are potentially harmful to ocean life and fisheries.
Researchers from Stanford University's School of Earth Sciences made the discovery by analyzing satellite images of Mexico's Sea of Cortez, also known as the Gulf of California-a narrow, 700-mile-long stretch of the Pacific Ocean that separates the Mexican mainland from the Baja California Peninsula. Immortalized in the 1941 book Sea of Cortez, by writer John Steinbeck and marine biologist Edward Ricketts, the region remains a hotspot of marine biodiversity and one of Mexico's most important commercial fishing centers.
EDIT
Matson and her colleagues wondered if each fertilization and irrigation event would trigger a noticeable phytoplankton bloom near the mouth of the Yaqui River, which is located on the mainland side of the Sea of Cortez. To find out, the researchers analyzed a series of images from an orbiting NASA satellite called SeaWiFS, which is equipped with special light-sensitive instruments that can detect phytoplankton floating near the surface of the sea. "These instruments measure the level of greenness in the water," explained Kevin R. Arrigo, an associate professor of geophysics at Stanford and co-author of the AGU paper. "The greener the water, the more phytoplankton there are." Stanford doctoral candidate Mike Beman carefully analyzed dozens of SeaWiFS images taken over the Sea of Cortez from 1998 through 2002. The results were dramatic. "I looked at five years of satellite data," said Beman, lead author of the study. "There were roughly four irrigation events per year, and right after each one, you'd see a bloom appear within a matter of days."
EDIT
According to the researchers, artificially induced algal blooms could have major impacts on recreational and commercial fishing, major industries in the Sea of Cortez. Red tides, for example, can cause outbreaks of life-threatening diseases, such as paralytic shellfish poisoning, which can shut down mussel and clam harvesting for long periods of time. Another concern is hypoxia, or oxygen depletion, which is caused by excessive algae growth. As the algal mass sinks, it is consumed by bacteria, which use up most of the oxygen in the water as they multiply. The result is an oxygen-depleted dead zone at the bottom of the sea where few creatures can survive. A massive dead zone appears every summer in the Gulf of Mexico off the coast of Louisiana and Texas. Scientists believe that agricultural runoff from the Mississippi River plays a pivotal role in creating this annual dead zone, which measured 8,500 square miles (22,000 square kilometers) in 2002-an area bigger than the state of Massachusetts."
EDIT
http://www.sciencedaily.com/releases/2004/12/041208202518.htm