Engineering Carbon for Impressive Hydrogen Storage
May 22nd, 2009 by Laura Mgrdichian
(PhysOrg.com) -- University of Missouri researchers recently showed how carbon nanostructures can be engineered to become excellent media for hydrogen storage, work that may be important for the advancement of hydrogen-energy technologies for vehicles and other applications, which have been slow to develop due to the lack of suitable storage materials.
Using a combination of experiement and computer modeling, the group investigated the storage potential of various “nanoporous” carbon materials - carbon that contains tiny vacant spaces with diameters ranging from less than one nanometer to several nanometers.
Nanoporous carbon is a member of a class of materials being targeted as promising storage candidates because they can reversibly store hydrogen, are easy to load with hydrogen, and don't have heat-management issues. Carbon has an edge over other materials because it is both cheap and lightweight, but the low interaction energies between hydrogen molecules and carbon atoms lead to storage capacities that are inadequate at room temperature.
But no material, carbon or otherwise, presently comes close to the 2010 targets that the U.S. Department of Energy (DOE) has set for hydrogen storage at low-pressure, room-temperature conditions, namely 45 grams (g) of hydrogen per kilogram (H2/kg) material for rigid storage materials and 28 g per liter for liquid storage.
“Our work makes the case that it is possible to significantly increase hydrogen storage capacities in carbon materials by engineering the nanopores,” said University of Missouri physicist Carlos Wexler, the study's corresponding researcher, to PhysOrg.com....
http://www.physorg.com/news162195986.html