|
I understand that it is against the oath of allegiance for nuclear supporters to actually conduct a discussion where facts are shared and open, but giving some sort of page number would further discussion greatly; especially since even the executive summary appears to contradict your accusation.
It's interesting how often people try to find one minor point that they think they can portray as being wrong and then try to use that to discredit a large body of work. In this case a 114 page report, but we see the same thing when climate deniers pick on stolen emails or a single normal mistake in a large data set.
I'd strongly encourage everyone to read through the document themselves.
World Nuclear Industry Status Report 2009 M. Schneider, S. Thomas, A. Froggatt, D. Koplow
Executive Summary and Conclusions The future of the nuclear energy industry is subject to a large number of media reports, study projects, expert meetings and political debates. Much of the published data is based on speculation rather than on an in-depth analysis of nuclear energy's industrial history, current operating status and trends.
The World Nuclear Industry Status Report 2009 provides the reader with the basic quantitative and qualitative facts on the nuclear power plants in operation, under construction and in planning phases throughout the world. A detailed overview assesses the economic performance of past and current nuclear projects.
As of 1st August 2009 there are 435 nuclear reactors operating in the world, nine less than in 2002. There are 52 units listed by the International Atomic Energy Agency (IAEA) as ―under construction. At the peak of the nuclear industry's growth phase in 1979 there were 233 reactors being built concurrently. Even at the end of 1987, there were still 120 reactors in process. Much has changed. For the first time since commercial use of nuclear energy began in the middle of the 1950s no new nuclear plant was connected to the grid in 2008. In fact, no start-up has been reported for the past two years, since Cernavoda-2 was connected to the grid on 7 August 2007, after 24 years of construction.
In 1989 a total of 177 nuclear reactors had been operated in what are now the 27 EU Member States, but as of 1st August 2009 only 144 units were in operation. Today the worldwide operating reactors total 370,000 megawatts (370 GW), about 1,600 MW1 less than one year ago.
In 2007 nuclear power plants generated about 2,600 TWh2 and provided 14% of the world's electricity. After an unprecedented drop in electricity generation of 2% in 2007, nuclear power plants' output lost another half percentage point in 2008. Nuclear power provided 5.5% of the commercial primary energy production and about 2% of the final energy in the world, and has trended downwards for several years.
Twenty-seven of the 31 countries operating nuclear power plants maintained (23) or decreased (4) their share of nuclear power within the electricity mix in 2008 relative to 2007. Four countries (Czech Republic, Lithuania, Romania, Slovakia) increased their share.
The average age of the operating nuclear power plants in the world is 25 years. Some nuclear utilities envisage reactor lifetimes of 40 years or more. Considering the fact that the average age of all 123 units that have already been closed is about 22 years, the doubling of the operational lifetime seems rather optimistic. However, we have assumed an average lifetime of 40 years for all operating and in-construction reactors in our calculations of how many plants would be shut down year by year. The exercise makes possible an evaluation of the minimum number of plants that would have to come on-line over the next decades in order to maintain the same number of operating plants.
In addition to the 52 units currently under construction3, 42 reactors (16,000 MW)4 would have to be planned, built and started up by 2015 – one every month and a half – and an additional 192 units (170,000 MW) over the following 10-year period – one every 19 days. In a new ―PLEX5 Scenario we have modeled the situation taking into account not only the start-up of all units currently under construction, but also the license renewal as of August 2009 of 54 US and some other nuclear reactors6. Even with license renewals, the number of units in operation would never again reach the historical peak of 444 in 2002. By 2015, the number of operating units in the world would be 10 short of the current level, though the installed capacity would increase by 9,600 MW. In the following decade an additional 174 reactors or about 152,000 MW would still have to be replaced to break even with the current nuclear fleet in the world.
Even if Finland and France each builds a reactor or two, China goes for an additional 20 plants and Japan, Korea or Eastern Europe add a few units, the overall worldwide trend will most likely be downwards over the next two decades. With extremely long lead times of 10 years and more, it will be practically impossible to maintain, let alone increase the number of operating nuclear power plants over the next 20 years. The one exception to this outcome would be if operating lifetimes could be substantially increased beyond 40 years on average; there is currently no basis for such an assumption.
For practically all of the potential nuclear newcomers, it remains unlikely that fission power programs can be implemented any time soon within the required technical, political, economic framework. None of the potential new nuclear countries has proper nuclear regulations, an independent regulator, domestic maintenance capacity, and the skilled workforce in place to run a nuclear plant. It might take at least 15 years to build up the necessary regulatory framework in countries that are starting from scratch.
Furthermore, few countries have sufficient grid capacity to absorb the output of a large nuclear plant, an often-overlooked constraint. This means that the economic challenge to financing a nuclear plant would be exacerbated by the very large ancillary investments required in the distribution network.
Countries with a grid size and quality that could apparently cope with a large nuclear plant in the short and medium term encounter an array of other significant barriers. These include a hostile or passive government (Australia, Norway, Malaysia, Thailand); generally hostile public opinion (Italy, Turkey); international non-proliferation concerns (Egypt, Israel); major economic concerns (Poland); a hostile environment due to earthquake and volcanic risks (Indonesia); and a lack of all necessary infrastructure (Venezuela). Many countries face several of these barriers at the same time.
Lack of a trained workforce and massive loss of competence are probably the most difficult challenges for proponents of nuclear expansion to overcome. Even France, the country with perhaps the strongest base of civilian nuclear competence, is threatened by a severe shortage of skilled workers. Demographics are a big cause: a large number of "baby-boomers" are approaching retirement — about 40% of the nuclear staff of the world‘s largest nuclear utility EDF by 2015. Currently, a maximum of 300 nuclear graduates are available for some 1,200 to 1,500 open positions. An additional difficulty stems from the fact that the number of nuclear graduates does not correspond at all to the availability of new recruits for the nuclear industry. In the USA for example only about one quarter of the 2008 nuclear graduates planned to actually work in the industry or a nuclear utility. Many prefer either to continue their studies or to join the military or other government and business sectors.
The situation is similar or worse in most of the other nuclear countries.
At least in the short term, severe manufacturing bottlenecks (only one facility in the world, Japan Steel Works, can cast large forgings for certain reactor pressure vessels) further hamper any practical nuclear revival.
This report covers, in addition to the subjects in earlier editions, an economic analysis of past, present and likely future nuclear projects. While many industries experience declining costs as they move out their technological learning curve, the nuclear industry continues to face steadily increasing costs on existing construction and future cost estimates. The May 2009 nuclear investment cost estimate update by the Massachusetts Institute of Technology (MIT) simply doubled an earlier estimate from $2,000 to $4,000 overnight cost (excluding financing) per installed kilowatt.
In fact reality has already bypassed projections. The flagship EPR project at Olkiluoto in Finland, managed by the largest nuclear builder in the world, AREVA NP, has turned into a financial fiasco. The project is more than three years behind schedule and at least 55% over budget, reaching a total cost estimate of €5 billion ($7 billion) or close to €3,100 ($4,400) per kilowatt.
There are numerous ways by which governments have organized or tolerated subsidies to nuclear power. They range from direct or guaranteed government loans to publicly funded research and development (R&D). Direct ownership of subsidized nuclear fuel chain facilities, government funded nuclear decommissioning and waste management, generous limited liability for accidents and the transfer of capital costs to ratepayers via stranded cost rules or special rate-basing allowances are all common in many countries. The current international economic crisis is exacerbating many of the problems that the proponents of the nuclear energy option are facing. At this point, there is as yet no obvious sign that the international nuclear industry could eventually turn the empirically evident decline into a promising future.
1 The equivalent of an EPR (European Pressurized Water Reactor), as under construction in Finland and France. 2 Terawatthours or billion kWh. 3 In contrast to earlier scenarios, we have considered that all units currently listed by the IAEA as ―under construction will be connected to the grid by 2016. 4 Units currently under construction range from 32 MW to 1600 MW, with an average of 880 MW, roughly the same as the average capacity of operating units with 855 MW. While it seems impossible to maintain the operating number of nuclear reactors under these conditions until 2015, an additional sixteen 1,000 MW units would be sufficient to maintain the installed nominal capacity. All of these units would have to start construction over the coming year and all be completed in optimal construction times. This seems unlikely considering the past experience but not impossible.
5 Plant Life Extension 6 Plus authorized lifetime extensions in the Netherlands, Spain and the UK.
|