EDIT
For some background on methane hydrates we can refer you here. This weeks’ Science paper is by Shakhova et al, a follow on to a 2005 GRL paper. The observation in 2005 was elevated concentrations of methane in ocean waters on the Siberian shelf, presumably driven by outgassing from the sediments and driving excess methane to the atmosphere. The new paper adds observations of methane spikes in the air over the water, confirming the methane’s escape from the water column, instead of it being oxidized to CO2 in the water, for example. The new data enable the methane flux from this region to the atmosphere to be quantified, and they find that this region rivals the methane flux from the whole rest of the ocean.
What’s missing from these studies themselves is evidence that the Siberian shelf degassing is new, a climate feedback, rather than simply nature-as-usual, driven by the retreat of submerged permafrost left over from the last ice age. However, other recent papers speak to this question.
Westbrook et al 2009, published stunning sonar images of bubble plumes rising from sediments off Spitzbergen, Norway. The bubbles are rising from a line on the sea floor that corresponds to the boundary of methane hydrate stability, a boundary that would retreat in a warming water column. A modeling study by Reagan and Moridis 2009 supports the idea that the observed bubbles could be in response to observed warming of the water column driven by anthropogenic warming.
Another recent paper, from Dlugokencky et al. 2009, describes an uptick in the methane concentration in the air in 2007, and tries to figure out where it’s coming from. The atmospheric methane concentration rose from the preanthropogenic until about the year 1993, at which point it rather abruptly plateaued. Methane is a transient gas in the atmosphere, so it ought to plateau if the emission flux is steady, but the shape of the concentration curve suggested some sudden decrease in the emission rate, stemming from the collapse of economic activity in the former Soviet bloc, or by drying of wetlands, or any of several other proposed and unresolved explanations. (Maybe the legislature in South Dakota should pass a law that methane is driven by astrology!) A previous uptick in the methane concentration in 1998 could be explained in terms of the effect of el Nino on wetlands, but the uptick in 2007 is not so simple to explain. The concentration held steady in 2008, meaning at least that interannual variability is important in the methane cycle, and making it hard to say if the long-term average emission rate is rising in a way that would be consistent with a new carbon feedback.
EDIT
http://www.realclimate.org/index.php/archives/2010/03/arctic-methane-on-the-move/