New solar energy conversion process could revamp solar power production
Stanford engineers have figured out how to simultaneously use the light and heat of the sun to generate electricity in a way that could make solar power production more than twice as efficient as existing methods and potentially cheap enough to compete with oil.
Unlike photovoltaic technology currently used in solar panels – which becomes less efficient as the temperature rises – the new process excels at higher temperatures.
Called 'photon enhanced thermionic emission,' or PETE, the process promises to surpass the efficiency of existing photovoltaic and thermal conversion technologies.
"This is really a conceptual breakthrough, a new energy conversion process, not just a new material or a slightly different tweak," said Nick Melosh, an assistant professor of materials science and engineering, who led the research group. "It is actually something fundamentally different about how you can harvest energy."
And the materials needed to build a device to make the process work are cheap and easily available, meaning the power that comes from it will be affordable.
Melosh is an assistant professor of materials science and engineering, and is senior author of a paper describing the tests the researchers conducted. It was published online August 1, in Nature Materials.
"Just demonstrating that the process worked was a big deal," Melosh said. "And we showed this physical mechanism does exist, it works as advertised."
Most photovoltaic cells, such as those used in rooftop solar panels, use the semiconducting material silicon to convert the energy from photons of light to electricity. But the cells can only use a portion of the light spectrum, with the rest just generating heat.
This heat from unused sunlight and inefficiencies in the cells themselves account for a loss of more than 50 percent of the initial solar energy reaching the cell.
If this wasted heat energy could somehow be harvested, solar cells could be much more efficient. The problem has been that high temperatures are necessary to power heat-based conversion systems, yet solar cell efficiency rapidly decreases at higher temperatures.
Until now, no one had come up with a way to wed thermal and solar cell conversion technologies.
"The PETE process could really give the feasibility of solar power a big boost," Melosh said. "Even if we don't achieve perfect efficiency, let's say we give a 10 percent boost to the efficiency of solar conversion, going from 20 percent efficiency to 30 percent, that is still a 50 percent increase overall."
And that is still a big enough increase that it could make solar energy competitive with oil.
http://www.eurekalert.org/pub_releases/2010-08/su-nse080210.php