automobile manufacturing. Come out from under that rock dude.
http://www.sciencedaily.com/releases/2010/03/100321182909.htmAmong the reports scheduled for the symposium are:
Michael McKubre, Ph.D., of SRI International in Menlo Park, Calif., provides an overview of cold fusion research. McKubre will discuss current knowledge in the field and explain why some doubts exist in the broader scientific community. He will also discuss recent experimental work performed at SRI. McKubre will focus on fusion, heat production and nuclear products. <3pm, Monday March 22, Cyril Magnin >
George Miley, Ph.D., reports on progress toward a new type of battery that works through a new cold fusion process and has a longer life than conventional batteries. The battery consists of a special type of electrolytic cell that operates at low temperature. The process involves purposely creating defects in the metal electrode of the cell. Miley is a professor at the University of Illinois in Urbana and director of its Fusion Studies Lab. <11am, Sunday March 21, Cyril Magnin I>
Melvin Miles, Ph.D., describes development of the first inexpensive instrument for reliably identifying the hallmark of cold fusion reactions: Production of excess heat from tabletop fusion devices now in use. Current "calorimeters," devices that measure excess heat, tend to be too complicated and inefficient for reliable use. The new calorimeter could boost the quality of research and open the field to scores of new scientists in university, government, and private labs, Miles suggests. He is with
Dixie State College in St. George, Utah. <2.30pm, Sunday March 21, Cyril Magnin I>
Vladimir Vysotskii, Ph.D., presents surprising experimental evidence that bacteria can undergo a type of cold fusion process and could be used to dispose of nuclear waste. He will describe studies of nuclear transmutation -- the transformation of one element into another -- of stable and radioactive isotopes in biological systems. Vysotskii is a scientist with Kiev National Shevchenko University in Kiev, Ukraine. <11.20am, Monday March 22, Cyril Magnin I>.
Tadahiko Mizuno, Ph.D., discusses an unconventional cold fusion device that uses phenanthrene, a substance found in coal and oil, as a reactant. He reports on excess heat production and gamma radiation production from the device. "Overall heat production exceeded any conceivable chemical reaction by two orders of magnitude," Mizuno noted. He is with Hokkaido University in Japan, and wrote the book Nuclear Transmutation: The Reality of Cold Fusion. <3pm, Sunday March 21, Cyril Magnin I>
Peter Hagelstein, Ph.D., describes new theoretical models to help explain excess heat production in cold fusion, one of the most controversial aspects of the field. He notes that in a nuclear reaction, one would expect that the energy produced would appear as kinetic energy in the products, but in the Fleischmann-Pons experiment there do not appear energetic particles in amounts consistent with the energy observed. His simple models help explain the observed energy changes, including the type and quantity of energy produced. Hagelstein is with the Massachusetts Institute of Technology. <10.20am, Sunday March 21, Cyril Magnin I>.
Xing Zhong Li, Ph.D., presents research demonstrating that cold fusion can occur without the production of strong nuclear radiation. He is developing a cold fusion reactor that demonstrates this principle. Li is a scientist with Tsinghua University in Beijing, China. <9.10am, Sunday March 21, Cyril Magnin I>.