Public release date: 12-Sep-2011
Contact: Andreas Battenberg
battenberg@zv.tum.de
49-892-891-0510
http://www.tum.de/">Technische Universitaet Muenchen
MUTE -- Efficient city car, showcase for electromobility research
TU Muenchen rolls out its electromobility vehicle concept at International Motor Show in Frankfurt
With its electric vehicle MUTE, the Technische Universitaet Muenchen (TUM) presents the first publicly visible result of its research program TUM.Energy. MUTE will showcase the TUM's answer to future challenges in personal mobility at the International Motor Show (IAA) in Frankfurt. MUTE is a purely electric, energy-efficient vehicle that meets all requirements of a full-fledged car. With MUTE, the 20 involved departments present a strategy for manufacturing a mass-production vehicle at an overall cost on par with that of comparable combustion engine vehicles.
With MUTE, researchers from the TU Muenchen have created an agile, sporty two-seater for regional road traffic. It has space sufficient for two persons plus luggage. The L7E certified electric motor, which is electronically limited to 15 kW, accelerates the light vehicle to 120 km/h. The lithium-ion battery is designed to guarantee a range of at least 100 kilometers. When needed, a zinc-air battery serves as a range extender – a "reserve" battery, as it were. Its sporty suspension and the active torque vectoring differential drive ensure good cornering stability and excellent driving performance.
The MUTE design conveys a snazzy, self-confident appearance. The built-in features fulfill all essential requirements of a modern road vehicle. A safety package, including an electronic stability program (ESP) system, a robust passenger compartment and crash elements made of carbon fiber reinforced plastic, imparts a high level of safety to the vehicle. Regarding ergonomics and comfort, here too, the MUTE concept leapfrogs other developments to date in the L7E class.
Decisive for the great efficiency of the MUTE is its low weight. A stable vehicle frame made of aluminum and a chassis made of carbon fiber reinforced plastic reduces the curb weight, including batteries, to a mere 500 kilograms. "Low weight is essential for an electric vehicle," says the TUM vehicle engineer Prof. Markus Lienkamp. "Greater weight requires more battery performance for the same range, which results in higher costs. Greater weight also results in reduced dynamics for a given power output. But we want a car that is affordable and fun to drive."
…