http://newscenter.lbl.gov/feature-stories/2011/09/23/lessons-learned-from-nature-photosynthesis/Lessons to be Learned from Nature in Photosynthesis
International Panel of Scientists Point the Way Forward
September 23, 2011
Lynn Yarris (510) 486-5375 lcyarris@lbl.gov
Photosynthesis is one of nature’s finest miracles. Through the photosynthetic process, green plants absorb sunlight in their leaves and convert the photonic energy into chemical energy that is stored as sugars in the plants’ biomass. If we can learn from nature and develop an artificial version of photosynthesis we would have an energy source that is absolutely clean and virtually inexhaustible.
“Solar energy is forecasted to provide a significant fraction of the world’s energy needs over the next century, as sunlight is the most abundant source of energy we have at our disposal,” says Graham Fleming, Vice Chancellor for Research at the University of California (UC) Berkeley who holds a joint appointment with Lawrence Berkeley National Laboratory (Berkeley Lab). “However, to utilize solar energy harvested from sunlight efficiently we must understand and improve both the effective capture of photons and the transfer of electronic excitation energy.”
Fleming, a physical chemist and authority on the quantum phenomena that underlie photosynthesis, is one of four international co-authors of a paper in Nature Chemistry, entitled “Lessons from nature about solar light harvesting.” The other co-authors are Gregory Scholes, of the University of Toronto, Alexandra Olaya-Castro, of London’s University College, and Rienk van Grondelle, of the University of Amsterdam. The paper describes the principles behind various natural antenna complexes and explains what research needs to be done for the design of effective artificial versions.
…
In their paper, Fleming and his international colleagues say that a clear framework exists for the design and synthesis of an effective antenna unit for future artificial photosynthesis systems providing several key areas of research are addressed. First, chromophores with large absorption strengths that can be conveniently incorporated into a synthetic protocol must be developed. Second, theoretical studies are needed to determine the optimal arrangement patterns of chromophores. Third, experiments are needed to elucidate the role of the environment on quantum coherence and the transport of electronic excitation energy. Experiments are also needed to determine how light-harvesting regulation and photo protection can be introduced and made reasonably sophisticated in response to incident light levels.
…http://dx.doi.org/10.1038/nchem.1145