http://web.mit.edu/newsoffice/2011/hybrid-solar-1021.htmlA new approach to solar power
Hybrid solar-thermoelectric systems could provide advantages over conventional solar cells or solar thermal plants.
David L. Chandler, MIT News Office
October 21, 2011
Systems to harness the sun’s energy typically generate either electricity or heat in the form of steam or hot water. But a new analysis by researchers at MIT shows that there could be significant advantages to systems that produce both electricity and heat simultaneously.
The new study incorporates thermoelectrics — devices that can produce an electric current from a temperature gradient — into a concentrating solar thermal system, also called a parabolic trough. Such systems use long, curved mirrors (the trough) to focus sunlight onto a glass tube running along the centerline of the trough. A liquid pumped through that tube gets heated by the sun, and then can be used to produce steam to drive a turbine, or used directly for space heating or industrial processes that require heat.
The new MIT study “shows a unique opportunity for thermoelectrics integrated within solar thermal systems,” says Evelyn Wang, associate professor of mechanical engineering at MIT, who was co-author of
http://www.sciencedirect.com/science/article/pii/S0038092X11002945">a paper describing the potential for such hybrid systems in the journal
Solar Energy.
The novel arrangement proposed by Wang and graduate student Nenad Miljkovic embeds a thermoelectric system in the central tube of a parabolic-trough system so that it produces both hot water and electricity at the same time. The key to making this work is a device called a thermosiphon that draws heat away from the “cold” part of a thermoelectric system, maintaining its temperature gradient.
…