Democratic Underground Latest Greatest Lobby Journals Search Options Help Login
Google

Nanoparticle electrode for batteries could make large-scale power storage on the energy grid feasib…

Printer-friendly format Printer-friendly format
Printer-friendly format Email this thread to a friend
Printer-friendly format Bookmark this thread
Home » Discuss » Topic Forums » Environment/Energy Donate to DU
 
OKIsItJustMe Donating Member (1000+ posts) Send PM | Profile | Ignore Mon Nov-28-11 05:48 PM
Original message
Nanoparticle electrode for batteries could make large-scale power storage on the energy grid feasib…
http://news.stanford.edu/news/2011/november/longlife-power-storage-112311.html
Stanford Report, November 23, 2011

Nanoparticle electrode for batteries could make large-scale power storage on the energy grid feasible, say Stanford researchers

Stanford researchers have used nanoparticles of a copper compound to develop a high-power battery electrode that is so inexpensive to make, so efficient and so durable that it could be used to build batteries big enough for economical large-scale energy storage on the electrical grid – something researchers have sought for years.

BY LOUIS BERGERON

The sun doesn't always shine and the breeze doesn't always blow and therein lie perhaps the biggest hurdles to making wind and solar power usable on a grand scale. If only there were an efficient, durable, high-power, rechargeable battery we could use to store large quantities of excess power generated on windy or sunny days until we needed it. And as long as we're fantasizing, let's imagine the battery is cheap to build, too.

Now Stanford researchers have developed part of that dream battery, a new electrode that employs crystalline nanoparticles of a copper compound.

In laboratory tests, the electrode survived 40,000 cycles of charging and discharging, after which it could still be charged to more than 80 percent of its original charge capacity. For comparison, the average lithium ion battery can handle about 400 charge/discharge cycles before it deteriorates too much to be of practical use.

"At a rate of several cycles per day, this electrode would have a good 30 years of useful life on the electrical grid," said Colin Wessells, a graduate student in materials science and engineering who is the lead author of a paper describing the research, published this week in Nature Communications.

http://dx.doi.org/10.1038/ncomms1563
Refresh | +11 Recommendations Printer Friendly | Permalink | Reply | Top

Home » Discuss » Topic Forums » Environment/Energy Donate to DU

Powered by DCForum+ Version 1.1 Copyright 1997-2002 DCScripts.com
Software has been extensively modified by the DU administrators


Important Notices: By participating on this discussion board, visitors agree to abide by the rules outlined on our Rules page. Messages posted on the Democratic Underground Discussion Forums are the opinions of the individuals who post them, and do not necessarily represent the opinions of Democratic Underground, LLC.

Home  |  Discussion Forums  |  Journals |  Store  |  Donate

About DU  |  Contact Us  |  Privacy Policy

Got a message for Democratic Underground? Click here to send us a message.

© 2001 - 2011 Democratic Underground, LLC