http://www.mse.umd.edu/news/news_story.php?id=6128Want Fuel Cells? Think Outside the Hydrogen Tank
…
Wachsman and his colleagues are working to change that. In the November 18 issue of Science, the team outlines the technology behind a new world record power density SOFC that generates two watts of power per square centimeter at 650° Celsius (1200° Fahrenheit). The cell uses a bi-layer electrolyte developed by Wachsman that is more than 100 times more conductive than the conventional zirconia-based electrolyte operating at the same temperature–also a world record. When the cells are assembled into a stack they should produce three kilowatts of electricity per kilogram of material, more than an internal combustion engine at approximately one-third the size.
The paper lays out a strategy to further lower temperature. The team believes its improvements to SOFC electrolytes and nanostructured-electrode designs could ultimately reduce the cells' operating temperature to only 350° Celsius (660° Fahrenheit). At that temperature they could start up fast enough for automotive applications, and would be more efficient and more affordable than current SOFCs because they could be manufactured from less expensive materials.Progress At Risk
The DOE's 2012 budget request, however, does not include funding for the SOFC program, effectively eliminating it from the agency's research priorities and greatly reducing funding options for groups like Wachsman's. This decision, he believes, was made without a complete understanding of recent significant advances in SOFC technology such as those described in the Science paper, which, combined with their fuel-flexibility, put them in an ideal position to improve nationwide energy efficiency today.
In the current issue of Energy and Environmental Science, Wachsman and his colleagues, Craig A. Marlowe and Kang Taek Lee, make the case that SOFCs should be an integral part of our energy policy. SOFCs, they argue, meet all of the DOE's six key energy strategies: they deploy clean electricity, make use of alternative fuels, help modernize the power grid, will help gradually electrify the vehicles we drive, increase vehicle fuel efficiency, and increase building and industrial efficiency.
…http://dx.doi.org/10.1126/science.1204090