...it run the risk of deleting what little share of hydrogen there is to lost to space? My thought is that unless secure and cheap containment methods for free hydrogen can be developed, virtually all of the hydrogen on earth will be depleted at some point in the not too distant future. Then we will find ourselves right back where we are right now.
<snip>
Part 1. The Economic Costs of Ecological Deficits
FACING THE CLIMATE CHALLENGE: Building the Wind-Hydrogen Economy
Lester R. Brown, The Earth Policy Reader (W.W. Norton & Co., NY: 2002).
For many years it appeared that wind would be a cornerstone of the new energy economy, but it now appears that it could become the centerpiece. Between 1995 and 2001, world wind electric generation multiplied nearly fivefold. (See Figure 1–5.) The generating capacity of 24,000 megawatts at the end of 2001 was sufficient to meet the residential needs of 24 million people at industrial-country consumption levels, a number equal to the combined populations of Denmark, Finland, Norway, and Sweden. 24
Wind is abundant, cheap, inexhaustible, and clean—four attributes that make it unique. By any yardstick, it is an abundant resource. In the United States, for example, a national wind resource inventory by the Department of Energy reports that the United States is richly endowed with wind energy. The Great Plains, sometimes referred to as the Saudi Arabia of wind energy, could easily supply twice as much electricity as the United States now uses. The United States is not the only country with a wealth of wind. China could double its current electricity generation from wind alone. Europe has enough readily accessible offshore wind energy to satisfy its demand for electricity. 25
Over the last 15 years, the cost of generating electricity from wind has fallen dramatically, dropping from 38¢ a kilowatt-hour to 4¢ or less at prime wind sites today. Indeed, some recent long-term wind electricity supply contracts have been signed at 3¢ per kilowatt-hour. Wind-generated electricity is now competitive with that generated from other sources, even without including the costs of climate disruption associated with producing electricity from fossil fuels. 26
Once cheap electricity from wind is available, it can be used to electrolyze water, producing hydrogen. Hydrogen is a way of both storing and efficiently transporting wind energy. Hydrogen is the fuel of choice for the new fuel-cell vehicles that every major automobile manufacturer is working on. Parallel technological advances over the last decade in the design of wind turbines and the evolution of fuel-cell engines have set the stage for a restructuring of the world energy economy. In the United States, for example, farmers and ranchers, who own most of the wind rights, could one day not only meet most of the country’s electricity needs but also supply much of the fuel used in automobiles.
<more>
http://www.earth-policy.org/Books/Epr/Epr1_ss16.htm