Democratic Underground Latest Greatest Lobby Journals Search Options Help Login
Google

Bottlenose Dolphin Deaths Spike Near Galveston, Including Newborns W. Umbilical Cords - LA Times

Printer-friendly format Printer-friendly format
Printer-friendly format Email this thread to a friend
Printer-friendly format Bookmark this thread
This topic is archived.
Home » Discuss » Topic Forums » Environment/Energy Donate to DU
 
hatrack Donating Member (1000+ posts) Send PM | Profile | Ignore Mon Mar-19-07 05:22 PM
Original message
Bottlenose Dolphin Deaths Spike Near Galveston, Including Newborns W. Umbilical Cords - LA Times
GALVESTON, TEXAS — An unusually large number of dead bottlenose dolphins have washed ashore near this Gulf of Mexico city in the last month, and investigators are looking at laboratory slides, satellite photos and anything else they can think of in their search for clues.

About 180 dolphins are stranded in Texas each year, many from January through March — their calving season, when infants may die during birth or become separated from their mothers and are unable to survive alone. The 47 bodies found recently included many newborns with umbilical cords still attached. That is three times the number found during the same period last year.

"Right now we don't know what's going on, but it is definitely significant," said Daniel Cowan, a pathologist at the University of Texas Medical Branch in Galveston. "Nowhere else in Texas is having this kind of problem. They're coming in in multiples." Investigators theorize that poisonous substances seeping into the water off Louisiana may have killed the dolphins, which were then carried by currents to the Texas shore. They are also scanning satellite images for toxic algae blooms and considering the possibility of morbillivirus, a dolphin virus similar to one that causes canine distemper.

Cold winter waters can also kill dolphins, said Cowan, who is also the director of the Texas Marine Mammal Stranding Network, a largely volunteer rescue group operating along the Texas coast. Most of the strandings occur south of Galveston. Blood, tissue and other samples from the dolphins will be sent to the National Marine Fisheries Service in Florida for toxicology tests, Cowan said.

EDIT

http://www.latimes.com/news/printedition/asection/la-na-dolphins19mar19,1,4228025.story
Printer Friendly | Permalink |  | Top
brokensymmetry Donating Member (1000+ posts) Send PM | Profile | Ignore Mon Mar-19-07 08:58 PM
Response to Original message
1. K+R:Nominated; n/t
.
Printer Friendly | Permalink |  | Top
 
AikidoSoul Donating Member (1000+ posts) Send PM | Profile | Ignore Mon Mar-19-07 10:02 PM
Response to Original message
2. This is part of a worldwide trend that is demonstrating collapse of
the environment.

Oceans are dying -- devolution has begun.

This is so shocking that it's difficult to grasp without weeping. The LA Times reports that this phenomenon has "...appeared in at least a dozen other places around the globe. It is one of many symptoms of a virulent pox on the world's oceans."

The question is, -- Will we continue to live in denial about manmade pollution until conditions deteriorate to the point that only simple organisms can flourish? That appears to be happening now -- something akin to devolution of life forms on a massive scale.

******************************************************

http://www.latimes.com/news/local/oceans/la-me-ocean30jul30,0,952130.story

PART ONE
ALTERED OCEANS
A Primeval Tide of Toxins
Runoff from modern life is feeding an explosion of primitive organisms. This 'rise of slime,' as one scientist calls it, is killing larger species and sickening people.
By Kenneth R . Weiss
Los Angelels Times Staff Writer

July 30, 2006

The fireweed began each spring as tufts of hairy growth and spread across the seafloor fast enough to cover a football field in an hour.

When fishermen touched it, their skin broke out in searing welts. Their lips blistered and peeled. Their eyes burned and swelled shut. Water that splashed from their nets spread the inflammation to their legs and torsos.

"It comes up like little boils," said Randolph Van Dyk, a fisherman whose powerful legs are pocked with scars. "At nighttime, you can feel them burning. I tried everything to get rid of them. Nothing worked."

As the weed blanketed miles of the bay over the last decade, it stained fishing nets a dark purple and left them coated with a powdery residue. When fishermen tried to shake it off the webbing, their throats constricted and they gasped for air.

After one man bit a fishing line in two, his mouth and tongue swelled so badly that he couldn't eat solid food for a week. Others made an even more painful mistake, neglecting to wash the residue from their hands before relieving themselves over the sides of their boats.

For a time, embarrassment kept them from talking publicly about their condition. When they finally did speak up, authorities dismissed their complaints — until a bucket of the hairy weed made it to the University of Queensland's marine botany lab.

Samples placed in a drying oven gave off fumes so strong that professors and students ran out of the building and into the street, choking and coughing.

Scientist Judith O'Neil put a tiny sample under a microscope and peered at the long black filaments. Consulting a botanical reference, she identified the weed as a strain of cyanobacteria, an ancestor of modern-day bacteria and algae that flourished 2.7 billion years ago.

O'Neil, a biological oceanographer, was familiar with these ancient life forms, but had never seen this particular kind before. What was it doing in Moreton Bay? Why was it so toxic? Why was it growing so fast?

The venomous weed, known to scientists as Lyngbya majuscula, has appeared in at least a dozen other places around the globe. It is one of many symptoms of a virulent pox on the world's oceans.

In many places — the atolls of the Pacific, the shrimp beds of the Eastern Seaboard, the fiords of Norway — some of the most advanced forms of ocean life are struggling to survive while the most primitive are thriving and spreading. Fish, corals and marine mammals are dying while algae, bacteria and jellyfish are growing unchecked. Where this pattern is most pronounced, scientists evoke a scenario of evolution running in reverse, returning to the primeval seas of hundreds of millions of years ago.

Jeremy B.C. Jackson, a marine ecologist and paleontologist at the Scripps Institution of Oceanography in La Jolla, says we are witnessing "the rise of slime."

For many years, it was assumed that the oceans were too vast for humanity to damage in any lasting way. "Man marks the Earth with ruin," wrote the 19th century poet Lord Byron. "His control stops with the shore."

Even in modern times, when oil spills, chemical discharges and other industrial accidents heightened awareness of man's capacity to injure sea life, the damage was often regarded as temporary.

But over time, the accumulation of environmental pressures has altered the basic chemistry of the seas.

The causes are varied, but collectively they have made the ocean more hospitable to primitive organisms by putting too much food into the water.

Industrial society is overdosing the oceans with basic nutrients — the nitrogen, carbon, iron and phosphorous compounds that curl out of smokestacks and tailpipes, wash into the sea from fertilized lawns and cropland, seep out of septic tanks and gush from sewer pipes.

Modern industry and agriculture produce more fixed nitrogen — fertilizer, essentially — than all natural processes on land. Millions of tons of carbon dioxide and nitrogen oxide, produced by burning fossil fuels, enter the ocean every day.

These pollutants feed excessive growth of harmful algae and bacteria.

At the same time, overfishing and destruction of wetlands have diminished the competing sea life and natural buffers that once held the microbes and weeds in check.

The consequences are evident worldwide.

Off the coast of Sweden each summer, blooms of cyanobacteria turn the Baltic Sea into a stinking, yellow-brown slush that locals call "rhubarb soup." Dead fish bob in the surf. If people get too close, their eyes burn and they have trouble breathing.

On the southern coast of Maui in the Hawaiian Islands, high tide leaves piles of green-brown algae that smell so foul condominium owners have hired a tractor driver to scrape them off the beach every morning.

On Florida's Gulf Coast, residents complain that harmful algae blooms have become bigger, more frequent and longer-lasting. Toxins from these red tides have killed hundreds of sea mammals and caused emergency rooms to fill up with coastal residents suffering respiratory distress.

North of Venice, Italy, a sticky mixture of algae and bacteria collects on the Adriatic Sea in spring and summer. This white mucus washes ashore, fouling beaches, or congeals into submerged blobs, some bigger than a person.

Along the Spanish coast, jellyfish swarm so thick that nets are strung to protect swimmers from their sting.

Organisms such as the fireweed that torments the fishermen of Moreton Bay have been around for eons. They emerged from the primordial ooze and came to dominate ancient oceans that were mostly lifeless. Over time, higher forms of life gained supremacy. Now they are under siege.

Like other scientists, Jeremy Jackson, 63, was slow to perceive this latest shift in the biological order. He has spent a good part of his professional life underwater. Though he had seen firsthand that ocean habitats were deteriorating, he believed in the resilience of the seas, in their inexhaustible capacity to heal themselves.

Then came the hurricane season of 1980. A Category 5 storm ripped through waters off the north coast of Jamaica, where Jackson had been studying corals since the late 1960s. A majestic stand of staghorn corals, known as "the Haystacks," was turned into rubble.

Scientists gathered from around the world to examine the damage. They wrote a paper predicting that the corals would rebound quickly, as they had for thousands of years.

"We were the best ecologists, working on what was the best-studied coral reef in the world, and we got it 100% wrong," Jackson recalled.

The vividly colored reef, which had nurtured a wealth of fish species, never recovered.

"Why did I get it wrong?" Jackson asked. He now sees that the quiet creep of environmental decay, occurring largely unnoticed over many years, had drastically altered the ocean.

As tourist resorts sprouted along the Jamaican coast, sewage, fertilizer and other nutrients washed into the sea. Overfishing removed most of the grazing fish that kept algae under control. Warmer waters encouraged bacterial growth and further stressed the corals.

For a time, these changes were masked by algae-eating sea urchins. But when disease greatly reduced their numbers, the reef was left defenseless. The corals were soon smothered by a carpet of algae and bacteria. Today, the reef is largely a boneyard of coral skeletons.

Many of the same forces have wiped out 80% of the corals in the Caribbean, despoiled two-thirds of the estuaries in the United States and destroyed 75% of California's kelp forests, once prime habitat for fish.

Jackson uses a homespun analogy to illustrate what is happening. The world's 6 billion inhabitants, he says, have failed to follow a homeowner's rule of thumb: Be careful what you dump in the swimming pool, and make sure the filter is working.

"We're pushing the oceans back to the dawn of evolution," Jackson said, "a half-billion years ago when the oceans were ruled by jellyfish and bacteria."

The 55-foot commercial trawler working the Georgia coast sagged under the burden of a hefty catch. The cables pinged and groaned as if about to snap.

Working the power winch, ropes and pulleys, Grovea Simpson hoisted the net and its dripping catch over the rear deck. With a tug on the trip-rope, the bulging sack unleashed its massive load.

Plop. Splat. Whoosh. About 2,000 pounds of cannonball jellyfish slopped onto the deck. The jiggling, cantaloupe-size blobs ricocheted around the stern and slid down an opening into the boat's ice-filled hold.

The deck was streaked with purple-brown contrails of slimy residue; a stinging, ammonia-like odor filled the air.

"That's the smell of money," Simpson said, all smiles at the haul. "Jellyballs are thick today. Seven cents a pound. Yes, sir, we're making money."

Simpson would never eat a jellyfish. But shrimp have grown scarce in these waters after decades of intensive trawling. So during the winter months when jellyfish swarm, he makes his living catching what he used to consider a messy nuisance clogging his nets.

It's simple math. He can spend a week at sea scraping the ocean bottom for shrimp and be lucky to pocket $600 after paying for fuel, food, wages for crew and the boat owner's cut.

Or, in a few hours of trawling for jellyfish, he can fill up the hold, be back in port the same day and clear twice as much. The jellyfish are processed at the dock in Darien, Ga., and exported to China and Japan, where spicy jellyfish salad and soup are delicacies.

"Easy money," Simpson said. "They get so thick you can walk on them."

Jellyfish populations are growing because they can. The fish that used to compete with them for food have become scarce because of overfishing. The sea turtles that once preyed on them are nearly gone. And the plankton they love to eat are growing explosively.

As their traditional catch declines, fishermen around the world now haul in 450,000 tons of jellyfish per year, more than twice as much as a decade ago.

This is a logical step in a process that Daniel Pauly, a fisheries scientist at the University of British Columbia, calls "fishing down the food web." Fishermen first went after the largest and most popular fish, such as tuna, swordfish, cod and grouper. When those stocks were depleted, they pursued other prey, often smaller and lower on the food chain.

"We are eating bait and moving on to jellyfish and plankton," Pauly said.

In California waters, for instance, three of the top five commercial catches are not even fish. They are squid, crabs and sea urchins.

This is what remains of California's historic fishing industry, once known for the sardine fishery attached to Monterey's Cannery Row and the world's largest tuna fleet, based in San Diego, which brought American kitchens StarKist, Bumble Bee and Chicken of the Sea.

Overfishing began centuries ago but accelerated dramatically after World War II, when new technologies armed industrial fleets with sonar, satellite data and global positioning systems, allowing them to track schools of fish and find their most remote habitats.

The result is that the population of big fish has declined by 90% over the last 50 years.

It's reached the point that the world's fishermen, though more numerous, working harder and sailing farther than ever, are catching fewer fish. The global catch has been declining since the late 1980s, an analysis by Pauly and colleague Reg Watson showed.

The reduction isn't readily apparent in the fish markets of wealthy countries, where people are willing to pay high prices for exotic fare from distant oceans — slimeheads caught off New Zealand and marketed as orange roughy, or Patagonian toothfish, renamed Chilean sea bass. Now, both of those fish are becoming scarce.

Fish farming also exacts a toll. To feed the farmed stocks, menhaden, sardines and anchovies are harvested in great quantities, ground up and processed into pellets.

Dense schools of these small fish once swam the world's estuaries and coastal waters, inhaling plankton like swarming clouds of silvery vacuum cleaners. Maryland's Chesapeake Bay, the nation's largest estuary, used to be clear, its waters filtered every three days by piles of oysters so numerous that their reefs posed a hazard to navigation. All this has changed.

There and in many other places, bacteria and algae run wild in the absence of the many mouths that once ate them. As the depletion of fish allows the lowest forms of life to run rampant, said Pauly, it is "transforming the oceans into a microbial soup."

Jellyfish are flourishing in the soup, demonstrating their ability to adapt to wholesale changes — including the growing human appetite for them. Jellyfish have been around, after all, at least 500 million years, longer than most marine animals.

In the Black Sea, an Atlantic comb jelly carried in the ballast water of a ship from the East Coast of the United States took over waters saturated with farm runoff. Free of predators, the jellies gorged on plankton and fish larvae, depleting the fisheries on which the Russian and Turkish fleets depend. The plague subsided only with the accidental importation of another predatory jellyfish that ate the comb jellies.

Federal scientists tallied a tenfold increase in jellies in the Bering Sea in the 1990s. They were so thick off the Alaskan Peninsula that fishermen nicknamed it the Slime Bank. Researchers have found teeming swarms of jellyfish off Georges Bank in New England and the coast of Namibia, in the fiords of Norway and in the Gulf of Mexico. Also proliferating is the giant nomurai found off Japan, a jellyfish the size of a washing machine.

Most jellies are smaller than a fist, but their sheer numbers have gummed up fishing nets, forced the shutdown of power plants by clogging intake pipes, stranded cruise liners and disrupted operations of the world's largest aircraft carrier, the Ronald Reagan.

Of the 2,000 or so identified jellyfish species, only about 10 are commercially harvested. The largest fisheries are off China and other Asian nations. New ones are springing up in Australia, the United States, England, Namibia, Turkey and Canada as fishermen look for ways to stay in business.

Pauly, 60, predicts that future generations will see nothing odd or unappetizing about a plateful of these gelatinous blobs.

"My kids," Pauly said, "will tell their children: Eat your jellyfish."

The dark water spun to the surface like an undersea cyclone. From 80 feet below, the swirling mixture of partially treated sewage spewed from a 5-foot-wide pipe off the coast of Hollywood, Fla., dubbed the "poop chute" by divers and fishermen.

SNIP
Printer Friendly | Permalink |  | Top
 
Ladydeedee Donating Member (6 posts) Send PM | Profile | Ignore Tue Mar-20-07 02:18 AM
Response to Reply #2
4. How horrible. How come this isnt on the MSM networks?
Those poor dolphins :-(
Printer Friendly | Permalink |  | Top
 
bighughdiehl Donating Member (284 posts) Send PM | Profile | Ignore Tue Mar-20-07 12:07 PM
Response to Reply #2
5. Weird and scary
I wonder if we'll be able to either swim in the ocean or eat tuna ten years from now? I'm sure there are other worse things I'm not thinking of.
Printer Friendly | Permalink |  | Top
 
cyberpj Donating Member (1000+ posts) Send PM | Profile | Ignore Mon Mar-19-07 10:26 PM
Response to Original message
3. So long, so long, so long... thanks for all the fish. nt
Printer Friendly | Permalink |  | Top
 
DU AdBot (1000+ posts) Click to send private message to this author Click to view 
this author's profile Click to add 
this author to your buddy list Click to add 
this author to your Ignore list Thu Dec 26th 2024, 12:38 PM
Response to Original message
Advertisements [?]
 Top

Home » Discuss » Topic Forums » Environment/Energy Donate to DU

Powered by DCForum+ Version 1.1 Copyright 1997-2002 DCScripts.com
Software has been extensively modified by the DU administrators


Important Notices: By participating on this discussion board, visitors agree to abide by the rules outlined on our Rules page. Messages posted on the Democratic Underground Discussion Forums are the opinions of the individuals who post them, and do not necessarily represent the opinions of Democratic Underground, LLC.

Home  |  Discussion Forums  |  Journals |  Store  |  Donate

About DU  |  Contact Us  |  Privacy Policy

Got a message for Democratic Underground? Click here to send us a message.

© 2001 - 2011 Democratic Underground, LLC