Sequoia e-voting machine commandeered by clever attackReturn-oriented programming strikes again
By Dan Goodin in San Francisco • Get more from this author
Posted in Security, 12th August 2009 00:17 GMT
Computer scientists have figured out to how trick a widely used electronic voting machine into altering tallies with a technique that bypasses measures that are supposed to prevent unauthorized code from running on the device.
The method, known as return-oriented programming, has already been used to defeat security measures built into the Linux and OpenBSD operating systems. Now scientists have used it against the Sequoia AVC Advantage machine, which is used almost universally in New Jersey and in parts of Louisiana, Pennsylvania, Wisconsin, Colorado and Virginia, according to the Verified Voting Foundation.
The machine is programmed to execute code only when it's stored on read-only memory chips that are difficult to install and remove. By expressly forbidding the running of code contained in random access memory, the designers intended to make it impossible for attackers to inject malicious programs that might compromise the integrity or confidentiality of the election.
The computer scientists were able to evade this safety mechanism using return-oriented programming. Rather than designing the malicious code from scratch, the technique reassembles programming expressions already found in the targeted software in a way that gives the researchers the ability to take complete control over the machine. It's tantamount to kidnappers who write a ransom note using letters cut from the headline of a newspaper.
more:
http://www.theregister.co.uk/2009/08/12/sequoia_evoting_machine_felled/.................
Computer Scientists Take Over Electronic Voting Machine with New Programming TechniqueSan Diego, CA, August 10, 2009 -- Computer scientists demonstrated that criminals could hack an electronic voting machine and steal votes using a malicious programming approach that had not been invented when the voting machine was designed. The team of scientists from University of California, San Diego, the University of Michigan, and Princeton University employed “return-oriented programming” to force a Sequoia AVC Advantage electronic voting machine to turn against itself and steal votes.
“Voting machines must remain secure throughout their entire service lifetime, and this study demonstrates how a relatively new programming technique can be used to take control of a voting machine that was designed to resist takeover, but that did not anticipate this new kind of malicious programming,” said Hovav Shacham, a professor of computer science at UC San Diego’s Jacobs School of Engineering and an author on the new study presented on August 10, 2009 at the 2009 Electronic Voting Technology Workshop / Workshop on Trustworthy Elections (EVT/WOTE 2009), the premier academic forum for voting security research.
more:
http://www.jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=873