http://www.eurekalert.org/pub_releases/2011-09/osoa-fdt090111.phpPublic release date: 1-Sep-2011
Contact: Angela Stark
astark@osa.org
202-416-1443
http://www.osa.org/">Optical Society of Americah2]Faster diagnostics through cheap, ultra-portable blood testing
New sensor described in Biomedical Optics Express combines state-of-the-art performance and accuracy for widespread use
WASHINGTON, Sept. 1—Blood tests are important diagnostic tools. They accurately tease-out vanishingly small concentrations of proteins and other molecules that help give a picture of overall health or signal the presence of specific diseases. Current testing procedures, however, are expensive and time-consuming, while sophisticated test equipment is bulky and difficult to transport.
Now, a team of researchers from the University of Toledo in Ohio has addressed all these drawbacks by developing a low-cost, portable technique that is able to quickly and reliably detect specific proteins in a sample of human blood. This innovative technique, described in the Sept. 1 issue of the Optical Society's (OSA) open-access journal, Biomedical Optics Express, could help in a wide range of medical sensing applications, including diagnosing diseases like cancer and diabetes long before clinical symptoms arise.
"The detection and measurement of specific blood proteins can have a huge impact on numerous applications in medical diagnostic sensing," says Brent D. Cameron with the department of bioengineering at the University of Toledo, one of the paper's authors. "This method has the potential to provide similar functionality of large and costly clinical instrumentation currently used to identify and quantify blood proteins for a fraction of current costs."
…
In this new system, the researchers borrowed a trick from nature, using artificially created molecules called aptamers to latch on to free-floating proteins in the blood. Aptamers are custom-made and commercially available short strands of nucleic acid. In some ways, they mimic the natural behavior of antibodies found in the body because they connect to one type of molecule, and only one type. Specific aptamers can be used to search for target compounds ranging from small molecules – such as drugs and dyes – to complex biological molecules such as enzymes, peptides, and proteins.
…