http://www.guardian.co.uk/science/neurophilosophy/2011/dec/04/1Embryonic stem cells self-organize themselves into functional pituitary gland. Image: Yoshiki Sasai, RIKEN Center for Developmental Biology.
In the latest of a series of remarkable studies, researchers from the RIKEN Center for Developmental Biology in Kobe, Japan report that embryonic stem cells grown under special conditions can spontaneously organize themselves into a partial pituitary gland that is fully functional when transplanted into mice.
Over the past four years, Yoshiki Sasai and his colleagues of RIKEN's Organogenesis and Neurogenesis Group have developed a novel cell culture technique for growing embryonic stem (ES) cells in floating three-dimensional aggregates. In their new study, published recently in Nature, they used it to grow mouse ES cells and then altered the culture conditions to mimic the chemical environment that gives rise to the adenohypophysis, or anterior pituitary.
Development of the adenophyophysis requires interactions between two different types of tissue – the oral ectoderm, which goes on to form the skin inside the mouth, and the hypothalamic neuroectoderm, which generates a small structure called the hypothalamus. These interactions cause a region of the oral ectoderm to invaginate, or fold in on itself, and then detach itself to form a small sac called Rathke's pouch.
Cells within Rathke's pouch then continue to differentiate further, generating the six different types of hormone-producing cell found in the mature adenohypophysis. Each one synthesizes a different hormone, under the control of the hypothalamus; the hormones are secreted into the blood stream and perform a wide range of critical functions, including the regulation of growth and blood pressure, metabolism and sex organ function.