ScienceDaily (Feb. 7, 2009) — In the tiny world of amino acids and proteins and in the helical shape of DNA, a biological phenomenon abounds.
These objects are all chiral — they cannot exactly superimpose their mirror image by translation or rotation. A common example of this is human hands — a right hand cannot superimpose itself into its mirror image, a left hand. This description of a molecule's symmetry (or lack thereof) is important in determining the molecule's properties in chemistry.
But while scientists and engineers know that at the sub-atomic level weak forces are chiral, how these electrostatic forces can generate a chiral world is still a mystery.
Snip
Their model also describes arrangement of DNA mixed with carbon nanotubes. DNA has been shown to form helices around nanotubes, thereby separating the different types of carbon nanotubes into families.
The research findings concur with previous research using microscopy.
"From our predicted helical shapes of DNA wrapped around carbon nanotubes, we found amazing correspondence to those that were recently measured by atomic force microscopy," Olvera de le Cruz says.
The work shows that electrostatics is a pathway for understanding how nature generates helical symmetries. Researchers hope that future work can show how to use simple interactions to generate other symmetries that drive complex phenomena.
http://www.sciencedaily.com/releases/2009/02/090205083711.htm