Boom. Very, very boom.ScienceDaily (Jan. 5, 2010) — University of Notre Dame astronomer Peter Garnavich and a team of collaborators have discovered a distant star that exploded when its center became so hot that matter and anti-matter particle pairs were created. The star, dubbed Y-155, began its life around 200 times the mass of our Sun but probably became "pair-unstable" and triggered a runaway thermonuclear reaction that made it visible nearly halfway across the universe.
Y-155 exploded about 7 billion years ago, when the universe was half its current age. It was discovered in the constellation Cetus (just south of Pisces) with the National Optical Astronomy Observatory's (NOAO) 4-m Blanco telescope in Chile in November of 2007 during the last weeks of the six-year ESSENCE project. The Keck 10-m telescope in Hawaii, the 6.5-m Magellan telescope in Chile, and the MMT telescope in Arizona rapidly focused on the new star, revealing that the wavelengths of light emitted from the supernova were stretched or "redshifted" by 80% due to the expansion of the universe.
Once the distance to the explosion was established, Garnavich and his collaborators calculated that, at its peak, Y-155 was generating energy at a rate 100 billion times greater than the sun's output. To do this, Y-155 must have synthesized between 6 and 8 solar masses of radioactive nickel. It is the decay of radioactive elements that drives the light curves of supernovae. A normal "Type Ia" thermonuclear supernova makes about one tenth as much radioactive nickel.
"In our images, Y-155 appeared a million times fainter than the unaided human eye can detect, but that is because of its enormous distance," Garnavich said. "If Y-155 had exploded in the Milky Way it would have knocked our socks off."
Even without the fact that the phrase "runaway antimatter production" shows up in the headline there, I struggle to comprehend those kinds of energies.