There is a first grade science book which, in the first lesson of the first grade, begins in an unfortunate manner to teach science, because it starts off an the wrong idea of what science is. There is a picture of a dog--a windable toy dog--and a hand comes to the winder, and then the dog is able to move. Under the last picture, it says "What makes it move?" Later on, there is a picture of a real dog and the question, "What makes it move?" Then there is a picture of a motorbike and the question, "What makes it move?" and so on.
I thought at first they were getting ready to tell what science was going to be about--physics, biology, chemistry--but that wasn't it. The answer was in the teacher's edition of the book: the answer I was trying to learn is that "energy makes it move."
Now, energy is a very subtle concept. It is very, very difficult to get right. What I meant is that it is not easy to understand energy well enough to use it right, so that you can deduce something correctly using the energy idea--it is beyond the first grade. It would be equally well to say that "God makes it move," or "spirit makes it move," or "movability makes it move." (In fact, one could equally well say "energy makes it stop.")
Look at it this way: that’s only the definition of energy; it should be reversed. We might say when something can move that it has energy in it, but not what makes it move is energy. This is a very subtle difference. It's the same with this inertia proposition.
Perhaps I can make the difference a little clearer this way: If you ask a child what makes the toy dog move, you should think about what an ordinary human being would answer. The answer is that you wound up the spring; it tries to unwind and pushes the gear around.
What a good way to begin a science course! Take apart the toy; see how it works. See the cleverness of the gears; see the ratchets. Learn something about the toy, the way the toy is put together, the ingenuity of people devising the ratchets and other things. That's good. The question is fine. The answer is a little unfortunate, because what they were trying to do is teach a definition of what is energy. But nothing whatever is learned.
Suppose a student would say, "I don't think energy makes it move." Where does the discussion go from there?
I finally figured out a way to test whether you have taught an idea or you have only taught a definition.
Test it this way: you say, "Without using the new word which you have just learned, try to rephrase what you have just learned in your own language." Without using the word "energy," tell me what you know now about the dog's motion." You cannot. So you learned nothing about science. That may be all right. You may not want to learn something about science right away. You have to learn definitions. But for the very first lesson, is that not possibly destructive?
I think for lesson number one, to learn a mystic formula for answering questions is very bad. The book has some others: "gravity makes it fall;" "the soles of your shoes wear out because of friction." Shoe leather wears out because it rubs against the sidewalk and the little notches and bumps on the sidewalk grab pieces and pull them off. To simply say it is because of friction, is sad, because it's not science.
My father dealt a little bit with energy and used the term after I got a little bit of the idea about it. What he would have done I know, because he did in fact essentially the same thing--though not the same example of the toy dog. He would say, "It moves because the sun is shining," if he wanted to give the same lesson.
I would say, "No. What has that to do with the sun shining? It moved because I wound up the springs."
"And why, my friend, are you able to move to wind up the spring?"
"I eat."
"What, my friend, do you eat?"
"I eat plants."
"And how do they grow?"
"They grow because the sun is shining."
And it is the same with the
dog.
What about gasoline? Accumulated energy of the sun, which is captured by plants and preserved in the ground. Other examples all end with the sun. And so the same idea about the world that our textbook is driving at is phrased in a very exciting way.
All the things that we see that are moving, are moving because the sun is shining. It does explain the relationship of one source of energy to another, and it can be denied by the child. He could say, "I don't think it is on account of the sun shining," and you can start a discussion. So there is a difference. (Later I could challenge him with the tides, and what makes the earth turn, and have my hand on mystery again.)
That is just an example of the difference between definitions (which are necessary) and science. The only objection in this particular case was that it was the first lesson. It must certainly come in later, telling you what energy is, but not to such a simple question as "What makes a dog move?" A child should be given a child's answer. "Open it up; let's look at it."
http://www.fotuva.org/feynman/what_is_science.html