ScienceDaily (Jan. 28, 2010) — Most humans are blissfully unaware that we owe our healthful existence to trillions of microbes that make their home in the nooks and crannies of the human body, primarily the gut.
During evolutionary history, humans and bacteria have forged a mutually beneficial coexistence that provides the microbes' room and board in exchange for an array of biochemical services that help support everything from the digestion of food to a robust immune system.
But the intimate details of the relationship -- how the cells of the host and the cells of the bacteria coexist and interact -- are murky. Now, however, with the help of a diminutive Pacific Ocean squid and the bioluminescent bacteria that colonize its light-emitting, predator-fooling organ, scientists may have found a key to how animal hosts and their microbial symbionts maintain a healthy, rhythmic coexistence.
In a study published the week of Jan. 18 in the Proceedings of the National Academy of Sciences, researchers led by Margaret McFall-Ngai and Edward Ruby, professors of medical microbiology and immunology at the University of Wisconsin-Madison, chart the genetic interplay of symbiosis, revealing a daily molecular choreography that may well be characteristic of higher animals, including humans. If true, the insight would have important practical implications for human and animal health, as similar events occur when our tissues are colonized by the germs that make us sick.
"Nobody has a good handle on how the balance between host and symbiont is achieved," notes McFall-Ngai.
more:
http://www.sciencedaily.com/releases/2010/01/100127223616.htm