Image: As depth increases inside the Earth, so does the pressure and heat. The experiments conducted by Carnegie researchers on magnesiowüstite mimicked pressures of the lower mantle--between 500,000 and 1 million times the pressure at sea level. Under those conditions, the electrons of iron in the mineral were forced to pair-up in orbits, which changed the elasticity of the magnesiowüstite. This change may be the reason why seismic waves behave so peculiarly at those depths.( Image courtesy S. Jacobsen, M. Wysession, and G. Caras.) Recently, seismologists have observed that the speed and direction of seismic waves in Earth’s lower mantle, between 400 and 1,800 miles below the surface, vary tremendously. "I think we may have discovered why the seismic waves travel so inconsistently there,"stated Jung-Fu Lin. Lin was with the Carnegie Institution’s Geophysical Laboratory at the time of the study and lead author of the paper published in the July 21, issue of Nature.
“Until this research, scientists have simplified the effects of iron on mantle materials. It is the most abundant transition metal in the planet and our results are not what scientists have predicted,” he continued. “We may have to reconsider what we think is going in that hidden zone. It’s much more complex than we imagined.”...cont'd
http://www.physorg.com/news5346.html