http://www.nytimes.com/2006/12/31/arts/music/31thom.html?ex=1325221200&en=e00c9b67991b7b24&ei=5088&partner=rssnyt&emc=rss“Listen to this,” Daniel Levitin said. “What is it?” He hit a button on his computer keyboard and out came a half-second clip of music. It was just two notes blasted on a raspy electric guitar, but I could immediately identify it: the opening lick to the Rolling Stones’ “Brown Sugar.”
Then he played another, even shorter snippet: a single chord struck once on piano. Again I could instantly figure out what it was: the first note in Elton John’s live version of “Benny and the Jets.”
Dr. Levitin beamed. “You hear only one note, and you already know who it is,” he said. “So what I want to know is: How we do this? Why are we so good at recognizing music?”
This is not merely some whoa-dude epiphany that a music fan might have while listening to a radio contest. Dr. Levitin has devoted his career to exploring this question. He is a cognitive psychologist who runs the Laboratory for Music Perception, Cognition and Expertise at McGill University in Montreal, perhaps the world’s leading lab in probing why music has such an intense effect on us.
“By the age of 5 we are all musical experts, so this stuff is clearly wired really deeply into us,” said Dr. Levitin, an eerily youthful-looking 49, surrounded by the pianos, guitars and enormous 16-track mixers that make his lab look more like a recording studio.
This summer he published “This Is Your Brain on Music” (Dutton), a layperson’s guide to the emerging neuroscience of music. Dr. Levitin is an unusually deft interpreter, full of striking scientific trivia. For example we learn that babies begin life with synesthesia, the trippy confusion that makes people experience sounds as smells or tastes as colors. Or that the cerebellum, a part of the brain that helps govern movement, is also wired to the ears and produces some of our emotional responses to music. His experiments have even suggested that watching a musician perform affects brain chemistry differently from listening to a recording.
<snip>
Observing 13 subjects who listened to classical music while in an M.R.I. machine, the scientists found a cascade of brain-chemical activity. First the music triggered the forebrain, as it analyzed the structure and meaning of the tune. Then the nucleus accumbus and ventral tegmental area activated to release dopamine, a chemical that triggers the brain’s sense of reward.
The cerebellum, an area normally associated with physical movement, reacted too, responding to what Dr. Levitin suspected was the brain’s predictions of where the song was going to go. As the brain internalizes the tempo, rhythm and emotional peaks of a song, the cerebellum begins reacting every time the song produces tension (that is, subtle deviations from its normal melody or tempo).
“When we saw all this activity going on precisely in sync, in this order, we knew we had the smoking gun,” he said. “We’ve always known that music is good for improving your mood. But this showed precisely how it happens.” <snip>
Check out the entire article. It's fascinating stuff!