This would be one of the biggest scientific breakthroughs of our age if it is really true. (And reproducible and verifiable and peer-reviewed science and if they can make it cheaper and if, if, if, if. But Holy Shit, this is big!)
Wow!
What is it:
"Muon-catalyzed fusion (μCF) is a process allowing nuclear fusion to take place at temperatures significantly lower than the temperatures required for thermonuclear fusion, even at room temperature or lower. Although it can be produced reliably with the right equipment and has been much studied, it is believed that the poor energy balance will prevent it from ever becoming a practical power source. However, if negatively charged muons ( μ− ) could be made more cheaply and efficiently somehow, or if virtually every one made could somehow be used to catalyze as many nuclear fusion reactions as possible, the energy balance might improve enough for muon-catalyzed fusion to become a practical power source. It used to be known as cold fusion; however, this term is now avoided as it can create confusion. A much more appropriate name would be cool fusion, particularly if muon-catalyzed fusion ever did become a practical power source. -- wikipedia
http://en.wikipedia.org/wiki/Muon-catalysed_fusionThe news today:
R. Colin Johnson
EE Times
(03/23/2009 )
PORTLAND, Ore. — U.S. Navy researchers claimed to have experimentally confirmed cold fusion in a presentation at the American Chemical Society's annual meeting.
"We have compelling evidence that fusion reactions are occurring" at room temperature, said Pamela Mosier-Boss, a scientist with the Space and Naval Warfare Systems Center (San Diego). The results are "the first scientific report of highly energetic neutrons from low-energy nuclear reactions," she added.
SNIP over past frauds announcing "cold fusion"The theoretical underpinnings of cold fusion have yet to be adequately explained. The hypothesis is that when electrolysis is performed on deuteron, molecules are fused into helium, releasing a high-energy neutron. While excess heat has been detected by researchers, no group had yet been able to detect the missing neutrons.
Now, the Naval researchers claim that the problem was instrumentation, which was not up to the task of detecting such small numbers of neutrons. To sense such small quantities, Mosier-Boss used a special plastic detector called CR-39. Using co-deposition with nickel and gold wire electrodes, which were inserted into a mixture of palladium chloride and deutrium, the detector was able to capture and track the high-energy neutrons.
Uses of this energy source
Potential benefits
If muon-catalyzed d-t nuclear fusion were able to be realized practically, it would be a much "greener" way of generating power than conventional nuclear fission reactors because muon-catalyzed d-t nuclear fusion (like most other types of nuclear fusion), produces far fewer harmful (and far less long-lived) radioactive wastes, and hardly any greenhouse gases. Practical and economically sensible muon-catalyzed d-t nuclear fusion would go a long way toward reducing the production of greenhouse gases, such as carbon dioxide (CO2), by reducing or even eliminating the need to burn fossil fuels and biomass that contain carbon, for example.Some people have proposed a "hybrid" fusion/nuclear fission schemes to use the large amount of neutrons produced in muon-catalyzed d-t nuclear fusions to "breed" fissile fuels, from "fertile" materials - for example, thorium-232 could breed uranium-233 in this way. The fissile fuels that have been bred can then be "burned," either in a conventional supercritical nuclear fission reactor or in an unconventional subcritical fission "pile." One example of an unconventional subcritical fission pile is an Accelerator-Driven System (ADS) that has been proposed for, and in some places is currently being developed for, the Accelerator Transmutation of Waste (ATW)—for example, using neutrons to transmute large quantities of highly radioactive and extremely long-lived nuclear wastes, such as those produced (mainly) by conventional nuclear fission reactors, into less harmful, less radioactive, less toxic, and much less long-lived transmuted elements. Another example of the creative use of an unconventional subcritical fission pile is the energy amplifier devised by Physics Nobel Laureate Carlo Rubbia, among others. -- wikipedia
http://en.wikipedia.org/wiki/Muon-catalysed_fusion