From Physicians for Social Reponsibility
http://www.psr.org/resources/nuclear-power-factsheet.htmlDirty, Dangerous and Expensive: The Truth About Nuclear PowerThe nuclear industry seeks to revitalize itself by manipulating the public’s concerns about global warming and energy insecurity to promote nuclear power as a clean and safe way to curb emissions of greenhouse gases and reduce dependence on foreign energy resources. Despite these claims by industry proponents, a thorough examination of the full life-cycle of nuclear power generation reveals nuclear power to be a dirty, dangerous and expensive form of energy that poses serious risks to human health, national security and U.S. taxpayers.
Nuclear Power is DirtyEach year, enormous quantities of radioactive waste are created during the nuclear fuel process, including 2,000 metric tons of high-level radioactive waste(1) and 12 million cubic feet of low-level radioactive waste(2) in the U.S. alone. More than 58,000 metric tons of highly radioactive spent fuel already has accumulated at reactor sites around the U.S. for which there currently is no permanent repository. Even without new nuclear production, the inventory of commercial spent fuel in the U.S. already exceeds the 63,000 metric ton statutory capacity of the controversial Yucca Mountain repository, which has yet to receive a license to operate. Even if Yucca Mountain is licensed, the Department of Energy has stated that it would not open before 2017.
Uranium, which must be removed from the ground, is used to fuel nuclear reactors. Uranium mining, which creates serious health and environmental problems, has disproportionately impacted indigenous people because much of the world’s uranium is located under indigenous land. Uranium miners experience higher rates of lung cancer, tuberculosis and other respiratory diseases. The production of 1,000 tons of uranium fuel generates approximately 100,000 tons of radioactive tailings and nearly one million gallons of liquid waste containing heavy metals and arsenic in addition to radioactivity.(3) These uranium tailings have contaminated rivers and lakes. A new method of uranium mining, known as in-situ leaching, does not produce tailings but it does threaten contamination of groundwater water supplies.
Serious Safety ConcernsDespite proponents’ claims that it is safe, the history of nuclear energy is marked by a number of disasters and near disasters. The 1986 Chernobyl disaster in Ukraine is one of the most frightening examples of the potentially catastrophic consequences of a nuclear accident. An estimated 220,000 people were displaced from their homes, and the radioactive fallout from the accident made 4,440 square kilometers of agricultural land and 6,820 square kilometers of forests in Belarus and Ukraine unusable. It is extremely difficult to get accurate information about the health effects from Chernobyl. Government agencies in Ukraine, Russia, and Belarus estimate that about 25,000 of the 600,000 involved in fire-fighting and clean up operations have died so far because of radiation exposure from the accident.(4) According to an April 2006 report commissioned by the European Greens for the European Parliament, there will be an additional 30,000 to 60,000 fatal cancer deaths worldwide from the accident.(5)
In 1979, the United States had its own disaster following an accident at the Three Mile Island Nuclear Reactor in Pennsylvania. Although there were no immediate deaths, the incident had serious health consequences for the surrounding area. A 1997 study found that those people living downwind of the reactor at the time of the event were two to ten times more likely to contract lung cancer or leukemia than those living upwind of the radioactive fallout.(6) The dangers of nuclear power have been underscored more recently by the close call of a catastrophic meltdown at the Davis-Besse reactor in Ohio in 2002, which in the years preceding the incident had received a near-perfect safety score.(3)
Climate change may further increase the risk of nuclear accidents. Heat waves, which are expected to become more frequent and intense as a result of global warming, can force the shut down or the power output reduction of reactors. During the 2006 heat wave, reactors in Michigan, Pennsylvania, Illinois, and Minnesota, as well as in France, Spain and Germany, were impacted. The European heat wave in the summer of 2003 caused cooling problems at French reactors that forced engineers to tell the government that they could no longer guarantee the safety of the country’s 58 nuclear power reactors.(3)
Proliferation, Loose Nukes and TerrorismThe inextricable link between nuclear energy and nuclear weapons is arguably the greatest danger of nuclear power. The same process used to manufacture low-enriched uranium for nuclear fuel also can be employed for the production of highly enriched uranium for nuclear weapons. As it has in the past, expansion of nuclear power could lead to an increase in the number of both nuclear weapons states and ‘threshold’ nuclear states that could quickly produce weapons by utilizing facilities and materials from their ‘civil’ nuclear programs a scenario many fear may be playing out in Iran. Expanded use of nuclear power would increase the risk that commercial nuclear technology will be used to construct clandestine weapons facilities, as was done by Pakistan.
In addition to uranium, plutonium can also be used to make a nuclear bomb. Plutonium, which is found only in extremely small quantities in nature, is produced in nuclear reactors. Reprocessing spent fuel to separate plutonium from the highly radioactive barrier in spent fuel rods, as is being proposed as a ‘waste solution’ under the Global Nuclear Energy Partnership program, increases the risk that the plutonium can be diverted or stolen for the production of nuclear weapons or radioactive ‘dirty’ bombs. Reprocessing is also the most polluting part of the nuclear fuel cycle.
The reprocessing facility in France, La Hague, is the world’s largest anthropogenic source of radioactivity and its releases have been found in the Arctic Circle.Continuedhttp://mediastorm.org/0007.htm